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Lecture Outline

• Topic 1: Basic Code Generation
– The MIPS assembly language
– A simple source language
– Stack-machine implementation of the simple language

• Topic 2: Code Generation for Objects
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From Stack Machines to MIPS

• The compiler generates code for a stack machine 
with accumulator

• We want to run the resulting code on the MIPS 
processor (or simulator)

• We simulate stack machine instructions using 
MIPS instructions and registers
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Simulating a Stack Machine…

• The accumulator is kept in MIPS register $a0

• The stack is kept in memory
– The stack grows towards lower addresses
– Standard convention on the MIPS architecture

• The address of the next location on the stack  is 
kept in MIPS register $sp
– The top of the stack is at address $sp + 4
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MIPS Assembly

MIPS architecture
– Prototypical Reduced Instruction Set Computer (RISC) 

architecture
– Arithmetic operations use registers for operands and 

results
– Must use load and store instructions to use operands 

and results in memory
– 32 general purpose registers (32 bits each)

• We will use $sp, $a0 and $t1 (a temporary register)

• Read the SPIM documentation for details
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A Sample of MIPS Instructions

– lw reg1 offset(reg2)
• Load 32-bit word from address reg2 + offset into reg1

– add reg1 reg2 reg3
• reg1 ← reg2 + reg3

– sw reg1 offset(reg2)
• Store 32-bit word in reg1 at address reg2 + offset

– addiu reg1 reg2 imm
• reg1 ← reg2 + imm
• “u” means overflow is not checked

– li reg imm
• reg ← imm
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MIPS Assembly. Example.

• The stack-machine code for 7 + 5 in MIPS:
acc ← 7
push acc

acc ← 5
acc ← acc + top_of_stack

pop

li $a0 7
sw $a0 0($sp)
addiu $sp $sp -4
li $a0 5
lw $t1 4($sp)
add $a0 $a0 $t1
addiu $sp $sp 4  

• We now generalize this to a simple language…
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A Small Language

• A language with integers and integer operations

            P → D; P | D
            D → def id(ARGS) = E;
     ARGS → id, ARGS | id
           E →  int | id | if E1 = E2 then E3 else E4

                  | E1 + E2 | E1 – E2 | id(E1,…,En)
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A Small Language (Cont.)

• The first function definition f is the “main” routine
• Running the program on input i means computing 

f(i)
• Program for computing the Fibonacci numbers:
           def fib(x) = if x = 1 then 0 else 
                               if x = 2 then 1 else  
                                   fib(x - 1) + fib(x – 2) 
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Code Generation Strategy

• For each expression e we generate MIPS code 
that:
– Computes the value of e in $a0
– Preserves $sp and the contents of the stack

• We define a code generation function cgen(e) 
whose result is the code generated for e
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Code Generation for Constants

• The code to evaluate a constant simply copies it 
into the accumulator:
                     cgen(i) = li $a0 i

• This  preserves the stack, as required

• Color key:
– RED: compile time
– BLUE: run time
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Code Generation for Add

          cgen(e1 + e2) = 
                     cgen(e1) 
                     sw $a0 0($sp)
                     addiu $sp $sp -4
                     cgen(e2)
                     lw $t1 4($sp)
                     add $a0 $t1 $a0
                     addiu $sp $sp 4

cgen(e1 + e2) = 
           cgen(e1) 
           print “sw $a0 0($sp)”
           print “addiu $sp $sp -4”
           cgen(e2)
           print “lw $t1 4($sp)”
           print “add $a0 $t1 $a0”
           print “addiu $sp $sp 4”
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Code Generation for Add. Wrong!

• Optimization: Put the result of e1 directly in  $t1?

         cgen(e1 + e2) = 
                     cgen(e1)
                     move $t1 $a0 
                     cgen(e2)
                     add $a0 $t1 $a0       

• Try to generate code for : 3 + (7 + 5)
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Code Generation Notes

• The code for  + is a template with “holes” for code 
for evaluating e1 and e2

• Stack machine code generation is recursive
– Code for e1 + e2 is code for e1 and e2 glued together

• Code generation can be written as a recursive-
descent of the AST
– At least for expressions
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Code Generation for Sub and Constants

• New instruction: sub reg1 reg2 reg3
– Implements reg1  ← reg2 - reg3 

                cgen(e1 - e2) = 
                          cgen(e1) 
                          sw $a0 0($sp)
                          addiu $sp $sp -4
                          cgen(e2)
                          lw $t1 4($sp)
                          sub $a0 $t1 $a0
                          addiu $sp $sp 4
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Code Generation for Conditional

• We need flow control instructions

• New instruction: beq reg1 reg2 label
– Branch to label if reg1 = reg2

• New instruction: b label
– Unconditional jump to label
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Code Generation for If (Cont.)

cgen(if e1 = e2 then e3 else e4) = 
  cgen(e1) 
  sw $a0 0($sp)
  addiu $sp $sp -4
  cgen(e2)
  lw $t1 4($sp)
  addiu $sp $sp 4
  beq $a0 $t1 true_branch

false_branch:
  cgen(e4)
  b end_if
true_branch:
  cgen(e3)
end_if:
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The Activation Record

• Code for function calls and function definitions 
depends on the layout of the AR

• A very simple AR suffices for this language:
– The result is always in the accumulator

• No need to store the result in the AR
– The activation record holds actual parameters

• For f(x1,…,xn) push xn,…,x1 on the stack
• These are the only variables in this language
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The Activation Record (Cont.)

• The stack discipline guarantees that on function 
exit $sp is the same as it was on function entry

• We need the return address

• A pointer to the current activation is useful
–This pointer lives in register $fp (frame pointer)
–Reason for frame pointer will be clear shortly
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The Activation Record

• Summary: For this language, an AR with the 
caller’s frame pointer, the actual parameters, and 
the return address suffices

• Picture: Consider a call to f(x,y), the AR is:

y
x

old fp

SP
FP

AR of f

return
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Code Generation for Function Call

• The calling sequence is the instructions (of both 
caller and callee) to set up a function invocation

• New instruction: jal label
– Jump to label, save address of next instruction in $ra
– On other architectures the return address is stored on 

the stack by the “call” instruction
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Code Generation for Function Call (Cont.)

cgen(f(e1,…,en)) = 
    sw $fp 0($sp)
    addiu $sp $sp -4
    cgen(en)
    sw $a0 0($sp)
    addiu $sp $sp -4
    …
    cgen(e1)
    sw $a0 0($sp)
    addiu $sp $sp -4
    jal f_entry

• The caller saves its value 
of the frame pointer

• Then it saves the actual 
parameters in reverse 
order

• The caller saves the return 
address in register $ra

• The AR so far is 4*n+4 
bytes long
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Code Generation for Function Definition

• New instruction: jr reg
– Jump to address in register reg

cgen(def f(x1,…,xn) = e) = 
    move $fp $sp
    sw $ra 0($sp)
    addiu $sp $sp -4
    cgen(e)
    lw $ra 4($sp)
    addiu $sp $sp z
    lw $fp 0($sp)
    jr $ra

• Note: The frame pointer 
points to the top, not bottom 
of the frame

• The callee pops the return 
address, the actual 
arguments and the saved 
value of the frame pointer

• z = 4*n + 8 
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Calling Sequence: Example for f(x,y)

Before call           On entry         Before exit   After call

SP

FP

y
x

old fp

SP

FP

SP

FP

SP
return

y
x

old fp

FP
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 Code Generation for Variables

• Variable references are the last construct

• The “variables” of a function are just its 
parameters
– They are all in the AR
– Pushed by the caller

• Problem: Because the stack grows when 
intermediate results are saved, the variables are 
not at a fixed offset from $sp
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Code Generation for Variables (Cont.)

• Solution: use a frame pointer
– Always points to the return address on the stack
– Since it does not move it can be used to find the 

variables
• Let xi be the ith (i = 1,…,n) formal parameter of the 

function for which code is being generated
 
         cgen(xi) = lw $a0 z($fp)          ( z = 4*i )
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Code Generation for Variables (Cont.)

• Example: For a function def f(x,y) = e the 
activation and frame pointer are set up as follows:

y
x

return

old fp
• X is at fp + 4
• Y is at fp + 8

FP

SP
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Summary

• The activation record must be designed together 
with the code generator 

• Code generation can be done by recursive 
traversal of the AST

• We recommend you use a stack machine for your 
Cool compiler (it’s simple)
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Summary

• Production compilers do different things
– Emphasis is on keeping values (esp. current stack 

frame) in registers
– Intermediate results are laid out in the AR, not pushed 

and popped from the stack
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An Improvement

• Idea: Keep temporaries in the AR

• The code generator must assign a location in the 
AR for each temporary
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Example

def fib(x) = if x = 1 then 0 else 
               if x = 2 then 1 else  
                   fib(x - 1) + fib(x – 2) 

• What intermediate values are placed on the 
stack?

• How many slots are needed in the AR to hold 
these values?
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How Many Temporaries?

• Let NT(e) = # of temps needed to evaluate e

• NT(e1 + e2)
– Needs at least as many temporaries as NT(e1)
– Needs at least as many temporaries as NT(e2) + 1

• Space used for temporaries in e1 can be reused for 
temporaries in e2
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The Equations

NT(e1 + e2) = max(NT(e1), 1 + NT(e2))
NT(e1 - e2) = max(NT(e1), 1 + NT(e2))

NT(if e1 = e2 then e3 else e4) = max(NT(e1),1 + NT(e2), NT(e3), NT(e4))
NT(id(e1,…,en) = max(NT(e1),…,NT(en))

NT(int) = 0
NT(id) = 0

Is this bottom-up or top-down?
What is NT(…code for fib…)?
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The Revised AR

• For a function definition f(x1,…,xn) = e the AR has 
2 + n + NT(e) elements
– Return address
– Frame pointer
– n arguments
– NT(e) locations for intermediate results
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Picture

. . .
x1

Return Addr.
Temp NT(e)

. . .
Temp 1

Old FP
xn

FP
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Revised Code Generation

• Code generation must know how many 
temporaries are in use at each point

• Add a new argument to code generation: the 
position of the next available temporary
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Code Generation for + (original)

cgen(e1 + e2) = 
                     cgen(e1) 
                     sw $a0 0($sp)
                     addiu $sp $sp -4
                     cgen(e2)
                     lw $t1 4($sp)
                     add $a0 $t1 $a0
                     addiu $sp $sp 4
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Code Generation for + (revised)

cgen(e1 + e2, nt) = 
                     cgen(e1, nt) 
                     sw $a0 nt($fp)

                     cgen(e2, nt + 4)
                     lw $t1 nt($fp)
                     add $a0 $t1 $a0
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Notes

• The temporary area is used like a small, fixed-
size stack

• Exercise: Write out cgen for other constructs
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Code Generation for OO Languages

Topic II
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Object Layout

• OO implementation = Stuff from last part + more 
stuff

• OO Slogan: If B is a subclass of A, then an object 
of class B can be used wherever an object of 
class A is expected

• This means that code in class A works unmodified 
for an object of class B
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Two Issues

• How are objects represented in memory?

• How is dynamic dispatch implemented?
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Object Layout Example

Class  B inherits A {
b: Int;
f(): Int { a };
g(): Int { a ← a + b };

};

Class  C inherits A {
c: Int;
h(): Int { a ← a + c };

};

Class A {
a: Int;
d: Int;
f(): Int { a ← a + d };

};
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Object Layout (Cont.)

• Attributes a and d are inherited by classes B and 
C

• All methods in all classes refer to a

• For A methods to work correctly in A, B, and C 
objects, attribute a must be in the same “place” in 
each object
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Object Layout (Cont.)

An object is like a struct in C.  The reference
foo.attribute

is an index into a foo struct at an offset 
corresponding to attribute

Objects in Cool are implemented similarly
– Objects are laid out in contiguous memory
– Each attribute stored at a fixed offset in object
– When a method is invoked, the object is self
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Cool Object Layout

• The first 3 words of Cool objects contain header 
information:

Dispatch Ptr
Attribute 1
Attribute 2

. . .

Class Tag
Object Size

Offset

0

4

8

12

16
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Cool Object Layout (Cont.)

• Class tag is an integer
– Identifies class of the object

• Object size is an integer
– Size of the object in words

• Dispatch ptr is a pointer to a table of methods
– More later

• Attributes in subsequent slots

• Lay out in contiguous memory
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Subclasses

Observation: Given a layout for class A, a layout for 
subclass B can be defined by extending the 

layout of A with additional slots for the additional 
attributes of B

Leaves the layout of A unchanged 
(B is an extension)
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Layout Picture

 Offset 
Class

0 4 8 12 16 20

A Atag 5 * a d

B Btag 6 * a d b

C Ctag 6 * a d c
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Subclasses (Cont.)

• The offset for an attribute is the same in a class 
and all of its subclasses
– Any method for an A1 can be used on a subclass A2

• Consider layout for An < … < A3 < A2 < A1

A2 attrs
A3 attrs

. . .

Header
A1 attrs.

A1 object

A2 object

A3 object
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Object Layout Example (Repeat)

Class  B inherits A {
b: Int;
f(): Int { a };
g(): Int { a ← a + b };

};

Class  C inherits A {
c: Int;
h(): Int { a ← a + c };

};

Class A {
a: Int;
d: Int;
f(): Int { a ← a + d };

};
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Dynamic Dispatch Example

• e.g()
– g refers to method in B if e is a B

• e.f()
– f refers to method in A if e is an A or C                      

(inherited in the case of C)
– f refers to method in B if e is a B

• The implementation of methods and dynamic 
dispatch strongly resembles the implementation 
of attributes
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Dispatch Tables

• Every class has a fixed set of methods         
(including inherited methods)

• A dispatch table indexes these methods
– An array of method entry points
– A method f lives at a fixed offset in the dispatch table 

for a class and all of its subclasses
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Dispatch Table Example

• The dispatch table for 
class A has only 1 method

• The tables for B and C 
extend the table for A to 
the right

• Because methods can be 
overridden, the method for 
f is not the same in every 
class, but is always at the 
same offset

 Offset 
Class

0 4

A fA

B fB g

C fA h
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Using Dispatch Tables

• The dispatch pointer in an object of class X points 
to the dispatch table for class X

• Every method f of class X is assigned an offset Of 
in the dispatch table at compile time
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Using Dispatch Tables (Cont.)

• To implement a dynamic dispatch e.f() we
– Evaluate e, giving an object x
– Call D[Of]

• D is the dispatch table for x
• In the call, self is bound to x


