
1

Code Generation

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications

CS143
Lecture 12

2

Lecture Outline

• Topic 1: Basic Code Generation
– The MIPS assembly language
– A simple source language
– Stack-machine implementation of the simple language

• Topic 2: Code Generation for Objects

3

From Stack Machines to MIPS

• The compiler generates code for a stack machine
with accumulator

• We want to run the resulting code on the MIPS
processor (or simulator)

• We simulate stack machine instructions using
MIPS instructions and registers

4

Simulating a Stack Machine…

• The accumulator is kept in MIPS register $a0

• The stack is kept in memory
– The stack grows towards lower addresses
– Standard convention on the MIPS architecture

• The address of the next location on the stack is
kept in MIPS register $sp
– The top of the stack is at address $sp + 4

5

MIPS Assembly

MIPS architecture
– Prototypical Reduced Instruction Set Computer (RISC)

architecture
– Arithmetic operations use registers for operands and

results
– Must use load and store instructions to use operands

and results in memory
– 32 general purpose registers (32 bits each)

• We will use $sp, $a0 and $t1 (a temporary register)

• Read the SPIM documentation for details

6

A Sample of MIPS Instructions

– lw reg1 offset(reg2)
• Load 32-bit word from address reg2 + offset into reg1

– add reg1 reg2 reg3
• reg1 ← reg2 + reg3

– sw reg1 offset(reg2)
• Store 32-bit word in reg1 at address reg2 + offset

– addiu reg1 reg2 imm
• reg1 ← reg2 + imm
• “u” means overflow is not checked

– li reg imm
• reg ← imm

7

MIPS Assembly. Example.

• The stack-machine code for 7 + 5 in MIPS:
acc ← 7
push acc

acc ← 5
acc ← acc + top_of_stack

pop

li $a0 7
sw $a0 0($sp)
addiu $sp $sp -4
li $a0 5
lw $t1 4($sp)
add $a0 $a0 $t1
addiu $sp $sp 4

• We now generalize this to a simple language…

8

A Small Language

• A language with integers and integer operations

 P → D; P | D
 D → def id(ARGS) = E;
 ARGS → id, ARGS | id
 E → int | id | if E1 = E2 then E3 else E4

 | E1 + E2 | E1 – E2 | id(E1,…,En)

9

A Small Language (Cont.)

• The first function definition f is the “main” routine
• Running the program on input i means computing

f(i)
• Program for computing the Fibonacci numbers:
 def fib(x) = if x = 1 then 0 else
 if x = 2 then 1 else
 fib(x - 1) + fib(x – 2)

10

Code Generation Strategy

• For each expression e we generate MIPS code
that:
– Computes the value of e in $a0
– Preserves $sp and the contents of the stack

• We define a code generation function cgen(e)
whose result is the code generated for e

11

Code Generation for Constants

• The code to evaluate a constant simply copies it
into the accumulator:
 cgen(i) = li $a0 i

• This preserves the stack, as required

• Color key:
– RED: compile time
– BLUE: run time

12

Code Generation for Add

 cgen(e1 + e2) =
 cgen(e1)
 sw $a0 0($sp)
 addiu $sp $sp -4
 cgen(e2)
 lw $t1 4($sp)
 add $a0 $t1 $a0
 addiu $sp $sp 4

cgen(e1 + e2) =
 cgen(e1)
 print “sw $a0 0($sp)”
 print “addiu $sp $sp -4”
 cgen(e2)
 print “lw $t1 4($sp)”
 print “add $a0 $t1 $a0”
 print “addiu $sp $sp 4”

13

Code Generation for Add. Wrong!

• Optimization: Put the result of e1 directly in $t1?

 cgen(e1 + e2) =
 cgen(e1)
 move $t1 $a0
 cgen(e2)
 add $a0 $t1 $a0

• Try to generate code for : 3 + (7 + 5)

14

Code Generation Notes

• The code for + is a template with “holes” for code
for evaluating e1 and e2

• Stack machine code generation is recursive
– Code for e1 + e2 is code for e1 and e2 glued together

• Code generation can be written as a recursive-
descent of the AST
– At least for expressions

15

Code Generation for Sub and Constants

• New instruction: sub reg1 reg2 reg3
– Implements reg1 ← reg2 - reg3

 cgen(e1 - e2) =
 cgen(e1)
 sw $a0 0($sp)
 addiu $sp $sp -4
 cgen(e2)
 lw $t1 4($sp)
 sub $a0 $t1 $a0
 addiu $sp $sp 4

16

Code Generation for Conditional

• We need flow control instructions

• New instruction: beq reg1 reg2 label
– Branch to label if reg1 = reg2

• New instruction: b label
– Unconditional jump to label

17

Code Generation for If (Cont.)

cgen(if e1 = e2 then e3 else e4) =
 cgen(e1)
 sw $a0 0($sp)
 addiu $sp $sp -4
 cgen(e2)
 lw $t1 4($sp)
 addiu $sp $sp 4
 beq $a0 $t1 true_branch

false_branch:
 cgen(e4)
 b end_if
true_branch:
 cgen(e3)
end_if:

18

The Activation Record

• Code for function calls and function definitions
depends on the layout of the AR

• A very simple AR suffices for this language:
– The result is always in the accumulator

• No need to store the result in the AR
– The activation record holds actual parameters

• For f(x1,…,xn) push xn,…,x1 on the stack
• These are the only variables in this language

19

The Activation Record (Cont.)

• The stack discipline guarantees that on function
exit $sp is the same as it was on function entry

• We need the return address

• A pointer to the current activation is useful
–This pointer lives in register $fp (frame pointer)
–Reason for frame pointer will be clear shortly

20

The Activation Record

• Summary: For this language, an AR with the
caller’s frame pointer, the actual parameters, and
the return address suffices

• Picture: Consider a call to f(x,y), the AR is:

y
x

old fp

SP
FP

AR of f

return

21

Code Generation for Function Call

• The calling sequence is the instructions (of both
caller and callee) to set up a function invocation

• New instruction: jal label
– Jump to label, save address of next instruction in $ra
– On other architectures the return address is stored on

the stack by the “call” instruction

22

Code Generation for Function Call (Cont.)

cgen(f(e1,…,en)) =
 sw $fp 0($sp)
 addiu $sp $sp -4
 cgen(en)
 sw $a0 0($sp)
 addiu $sp $sp -4
 …
 cgen(e1)
 sw $a0 0($sp)
 addiu $sp $sp -4
 jal f_entry

• The caller saves its value
of the frame pointer

• Then it saves the actual
parameters in reverse
order

• The caller saves the return
address in register $ra

• The AR so far is 4*n+4
bytes long

23

Code Generation for Function Definition

• New instruction: jr reg
– Jump to address in register reg

cgen(def f(x1,…,xn) = e) =
 move $fp $sp
 sw $ra 0($sp)
 addiu $sp $sp -4
 cgen(e)
 lw $ra 4($sp)
 addiu $sp $sp z
 lw $fp 0($sp)
 jr $ra

• Note: The frame pointer
points to the top, not bottom
of the frame

• The callee pops the return
address, the actual
arguments and the saved
value of the frame pointer

• z = 4*n + 8

24

Calling Sequence: Example for f(x,y)

Before call On entry Before exit After call

SP

FP

y
x

old fp

SP

FP

SP

FP

SP
return

y
x

old fp

FP

25

 Code Generation for Variables

• Variable references are the last construct

• The “variables” of a function are just its
parameters
– They are all in the AR
– Pushed by the caller

• Problem: Because the stack grows when
intermediate results are saved, the variables are
not at a fixed offset from $sp

26

Code Generation for Variables (Cont.)

• Solution: use a frame pointer
– Always points to the return address on the stack
– Since it does not move it can be used to find the

variables
• Let xi be the ith (i = 1,…,n) formal parameter of the

function for which code is being generated

 cgen(xi) = lw $a0 z($fp) (z = 4*i)

27

Code Generation for Variables (Cont.)

• Example: For a function def f(x,y) = e the
activation and frame pointer are set up as follows:

y
x

return

old fp
• X is at fp + 4
• Y is at fp + 8

FP

SP

28

Summary

• The activation record must be designed together
with the code generator

• Code generation can be done by recursive
traversal of the AST

• We recommend you use a stack machine for your
Cool compiler (it’s simple)

29

Summary

• Production compilers do different things
– Emphasis is on keeping values (esp. current stack

frame) in registers
– Intermediate results are laid out in the AR, not pushed

and popped from the stack

30

An Improvement

• Idea: Keep temporaries in the AR

• The code generator must assign a location in the
AR for each temporary

31

Example

def fib(x) = if x = 1 then 0 else
 if x = 2 then 1 else
 fib(x - 1) + fib(x – 2)

• What intermediate values are placed on the
stack?

• How many slots are needed in the AR to hold
these values?

32

How Many Temporaries?

• Let NT(e) = # of temps needed to evaluate e

• NT(e1 + e2)
– Needs at least as many temporaries as NT(e1)
– Needs at least as many temporaries as NT(e2) + 1

• Space used for temporaries in e1 can be reused for
temporaries in e2

33

The Equations

NT(e1 + e2) = max(NT(e1), 1 + NT(e2))
NT(e1 - e2) = max(NT(e1), 1 + NT(e2))

NT(if e1 = e2 then e3 else e4) = max(NT(e1),1 + NT(e2), NT(e3), NT(e4))
NT(id(e1,…,en) = max(NT(e1),…,NT(en))

NT(int) = 0
NT(id) = 0

Is this bottom-up or top-down?
What is NT(…code for fib…)?

34

The Revised AR

• For a function definition f(x1,…,xn) = e the AR has
2 + n + NT(e) elements
– Return address
– Frame pointer
– n arguments
– NT(e) locations for intermediate results

35

Picture

. . .
x1

Return Addr.
Temp NT(e)

. . .
Temp 1

Old FP
xn

FP

36

Revised Code Generation

• Code generation must know how many
temporaries are in use at each point

• Add a new argument to code generation: the
position of the next available temporary

37

Code Generation for + (original)

cgen(e1 + e2) =
 cgen(e1)
 sw $a0 0($sp)
 addiu $sp $sp -4
 cgen(e2)
 lw $t1 4($sp)
 add $a0 $t1 $a0
 addiu $sp $sp 4

38

Code Generation for + (revised)

cgen(e1 + e2, nt) =
 cgen(e1, nt)
 sw $a0 nt($fp)

 cgen(e2, nt + 4)
 lw $t1 nt($fp)
 add $a0 $t1 $a0

39

Notes

• The temporary area is used like a small, fixed-
size stack

• Exercise: Write out cgen for other constructs

40

Code Generation for OO Languages

Topic II

41

Object Layout

• OO implementation = Stuff from last part + more
stuff

• OO Slogan: If B is a subclass of A, then an object
of class B can be used wherever an object of
class A is expected

• This means that code in class A works unmodified
for an object of class B

42

Two Issues

• How are objects represented in memory?

• How is dynamic dispatch implemented?

43

Object Layout Example

Class B inherits A {
b: Int;
f(): Int { a };
g(): Int { a ← a + b };

};

Class C inherits A {
c: Int;
h(): Int { a ← a + c };

};

Class A {
a: Int;
d: Int;
f(): Int { a ← a + d };

};

44

Object Layout (Cont.)

• Attributes a and d are inherited by classes B and
C

• All methods in all classes refer to a

• For A methods to work correctly in A, B, and C
objects, attribute a must be in the same “place” in
each object

45

Object Layout (Cont.)

An object is like a struct in C. The reference
foo.attribute

is an index into a foo struct at an offset
corresponding to attribute

Objects in Cool are implemented similarly
– Objects are laid out in contiguous memory
– Each attribute stored at a fixed offset in object
– When a method is invoked, the object is self

46

Cool Object Layout

• The first 3 words of Cool objects contain header
information:

Dispatch Ptr
Attribute 1
Attribute 2

. . .

Class Tag
Object Size

Offset

0

4

8

12

16

47

Cool Object Layout (Cont.)

• Class tag is an integer
– Identifies class of the object

• Object size is an integer
– Size of the object in words

• Dispatch ptr is a pointer to a table of methods
– More later

• Attributes in subsequent slots

• Lay out in contiguous memory

48

Subclasses

Observation: Given a layout for class A, a layout for
subclass B can be defined by extending the

layout of A with additional slots for the additional
attributes of B

Leaves the layout of A unchanged
(B is an extension)

49

Layout Picture

 Offset
Class

0 4 8 12 16 20

A Atag 5 * a d

B Btag 6 * a d b

C Ctag 6 * a d c

50

Subclasses (Cont.)

• The offset for an attribute is the same in a class
and all of its subclasses
– Any method for an A1 can be used on a subclass A2

• Consider layout for An < … < A3 < A2 < A1

A2 attrs
A3 attrs

. . .

Header
A1 attrs.

A1 object

A2 object

A3 object

51

Object Layout Example (Repeat)

Class B inherits A {
b: Int;
f(): Int { a };
g(): Int { a ← a + b };

};

Class C inherits A {
c: Int;
h(): Int { a ← a + c };

};

Class A {
a: Int;
d: Int;
f(): Int { a ← a + d };

};

52

Dynamic Dispatch Example

• e.g()
– g refers to method in B if e is a B

• e.f()
– f refers to method in A if e is an A or C

(inherited in the case of C)
– f refers to method in B if e is a B

• The implementation of methods and dynamic
dispatch strongly resembles the implementation
of attributes

53

Dispatch Tables

• Every class has a fixed set of methods
(including inherited methods)

• A dispatch table indexes these methods
– An array of method entry points
– A method f lives at a fixed offset in the dispatch table

for a class and all of its subclasses

54

Dispatch Table Example

• The dispatch table for
class A has only 1 method

• The tables for B and C
extend the table for A to
the right

• Because methods can be
overridden, the method for
f is not the same in every
class, but is always at the
same offset

 Offset
Class

0 4

A fA

B fB g

C fA h

55

Using Dispatch Tables

• The dispatch pointer in an object of class X points
to the dispatch table for class X

• Every method f of class X is assigned an offset Of
in the dispatch table at compile time

56

Using Dispatch Tables (Cont.)

• To implement a dynamic dispatch e.f() we
– Evaluate e, giving an object x
– Call D[Of]

• D is the dispatch table for x
• In the call, self is bound to x

