
A Tour of the Cool Support Code∗

1 Introduction

The Cool compiler project provides a number of basic data types to make the task of writing a Cool
compiler tractable in the timespan of the course. This document provides an overview of the Cool
compiler support code, which includes:

• a linked list data type;

• a string table package;

• a symbol table package;

• miscellaneous utilities for the parser and lexer;

• a package for managing Cool abstract syntax trees;

• routines for printing abstract syntax trees;

• miscellaneous routines for handling multiple input files and command-line flags;

• the runtime system.

This document should be read in conjunction with the source code. With the exception of the abstract
syntax tree package (which is automatically generated), there are also extensive comments in the source.

The purpose of the Cool support code is to be easy to understand and use. There are much more
efficient implementations of most of the data structures used in the system. It is recommended that
students implementing a Cool compiler also stick to simple, obviously correct, and perhaps inefficient
implementations—writing a compiler that works correctly is usually difficult enough.

The Cool system is written in C++ and it is assumed that the reader has some familiarity with that
language. The base system deliberately uses a simple subset of the language. The heavily used features
are: classes, single inheritance, virtual functions, and templates. Overloading is used very sparingly; with
one exception, operator overloading is avoided completely (the exception is the operator <<). Destructors
are not used and in fact memory management is ignored completely. Memory management is a very
important part of software development as it is currently practiced in industry, but memory management
is also tricky, error-prone, and very time consuming to get completely right. It is suggested that students
also not worry about memory management in writing their own Cool compilers.

∗Copyright c©1995-2016 by Alex Aiken. All rights reserved.

1

2 Lists

The file list.h implements a simple linked list datatype. The operations are similar to those provided in
Lisp-family languages: a constructor List adds a new element to the front of a list, hd returns the first
element of a list, and tl returns the tail of a list. Functions are also provided for computing the length
of a list, applying a function to every element of a list, and printing a list. Example uses of lists can be
found in the implementation of both string tables and symbol tables.

3 String Tables

All compilers manage large numbers of strings such as program identifiers, numerical constants, and string
constants. Often, many of these strings are the same. For example, each identifier typically occurs many
times in a program. To ensure that string constants are stored compactly and manipulated efficiently, a
specialized data structure, the string table, is employed.

A string table is a lookup table that maintains a single copy of each string. The Cool string table class
provides methods for inserting and querying string tables in a variety of ways (see the file stringtab.h).
While production compilers use hashed data structures to implement string tables, the Cool string tables
are implemented as lists (see stringtab functions.h). The components of Cool string tables are of type
Entry. Each Entry stores a string, the length of the string, and an integer index unique to the string.

An important point about the structure of the Cool compiler is that there are actually three distinct
string tables: one for string constants (stringtable), one for integer constants (inttable), and one for
identifiers (idtable). The code generator must distinguish integer constants and string constants from
each other and from identifiers, because special code is produced for each string constant and each integer
constant in the program. Having three distinct string tables makes this distinction easy. Note that each
of the three tables has a different element type (StrEntry, IntEntry, and IdEntry), each of which is
a derived class of Entry. Throughout the rest of the compiler (except parts of the code generator), a
pointer to an Entry is called a Symbol, irrespective of whether the symbol represents an integer, string,
or identifier.

Because string tables store only one copy of each string, comparing whether two IntEntrys, StrEntrys,
or IdEntrys x and y represent the same string can be done simply by comparing the two pointers x ==

y. Note that it does not make sense to compare entries from different string tables (e.g., IntEntrys with
StrEntrys) as these are guaranteed to be different even if the strings are the same.

Three methods are provided to add elements to a table: add string(char *s,int m), which adds
a string s of at most m characters; add string(char *s), which adds a string s to the table; and
add int(int i), which converts integer i to a string and adds the string to the table. Each of these
methods returns a type derived from Entry to describe the symbol table entry, on which the method
get string is defined for extracting the entry’s string. Before using these functions you should read the
documentation in stringtab.cc. If you don’t use the interface with the string table manager correctly, your
program may crash.

4 Symbol Tables

In addition to strings, compilers must also determine and manage the scope of program names. A symbol
table is a data structure for managing scope. Conceptually, a symbol table is just another lookup table.
The key is the symbol (the name) and the result is whatever information has been associated with that
symbol (e.g., the symbol’s type).

2

In addition to adding and removing symbols, symbol tables also support operations for entering and
exiting scopes and for checking whether an identifier is already defined in the current scope. The lookup
operation must also observe the scoping rules of the language; if there are multiple definitions of identifier
x, the scoping rules determine which definition a lookup of x returns. In most languages, including Cool,
inner definitions hide outer definitions. Thus, a lookup on x returns the definition of x from the innermost
scope with a definition of x.

Cool symbol tables are implemented as lists of scopes, where each scope is a list of 〈identifier, data〉
pairs. The “data” is whatever data the programmer wishes to associate with each identifier. The symbol
table operations are very straightforward to define on this structure and are documented in symtab.h.
An example illustrating the use of symbol tables is in the file symtab example.cc.

5 Utilities

The files utilities.h and utilities.cc define a few functions useful in writing and debugging a Cool
parser and lexical analyzer. See the source code for documentation.

6 Abstract Syntax Trees

After lexical analysis and parsing, a Cool program is represented internally by the Cool compiler as an
abstract syntax tree. The project comes with a definition of Cool abstract syntax trees (ASTs) built
in. The AST package is by far the largest piece of code in the base system and requires the most time
to learn. The learning process is made more complex because the AST code is generated automatically
from a specification in the file cool-tree.aps. While the generated code is quite simple and regular in
structure, it is also devoid of comments. This section serves as the documentation for the AST package.

6.1 Phyla and Constructors

The AST data type provides, for each kind of Cool construct, a class for representing expressions of that
kind. There is a class for let expressions, another class of + expressions, and so on. Objects of these
classes are nodes in Cool abstract syntax trees. For example, an expression e1 + e2 is represented by a
+ expression object, which has two subtrees: one for the tree representing the expression e1 and one for
the tree representing the expression e2.

The Cool abstract syntax is specified in a language called APS. In APS terminology, the various
kinds of abstract syntax tree nodes (let, +, etc.) are called constructors. (Don’t confuse this use of the
term “constructor” with C++ constructors; while similar, this is a slightly different meaning taken from
functional languages that predates C++.) The form of the AST is described by a set of phyla. Each
phylum has one or more constructors.

Phyla are really just types. That is, instead of having one large group of undifferentiated constructors,
the constructors are grouped together according to function, so that, for example, the constructors for
expression ASTs are distinguished from the constructors for class ASTs. The phyla are defined at the
beginning of cool-tree.aps:

module COOL begin

phylum Program;

phylum Class_;

3

phylum Classes = LIST[Class_];

phylum Feature;

phylum Features = LIST[Feature];

phylum Formal;

phylum Formals = LIST[Formal];

phylum Expression;

phylum Expressions = LIST[Expression];

phylum Case;

phylum Cases = LIST[Case];

From the definition it can be seen that there are two distinct kinds of phyla: “normal” phyla and list
phyla. “Normal” phyla each have associated constructors; list phyla have a fixed set of list operations.

Each constructor takes typed arguments and returns a typed result. The types may either be phyla
or any ordinary C++ type. In fact, the phyla declarations are themselves compiled into C++ class
declarations by an APS compiler. A sample constructor definition is

constructor class_(name : Symbol; parent: Symbol; features : Features;

filename : Symbol) : Class_;

This declaration specifies that the class constructor1 takes four arguments: a Symbol (a type identifier)
for the class name, a Symbol (another type identifier) for the parent class, a Features, and a Symbol

for the filename in which the class definition occurs. The phylum Features is defined to be a list of
Feature’s by the declaration

phylum Features = LIST[Feature];

See Section 6.2 for a description of the operations defined on AST lists.
The class constructor returns an AST of type (or phylum) Class . In cool.y there is the following

example of a use of the class constructor:

class : CLASS TYPEID INHERITS TYPEID IS optional_feature_list END ’;’

{ $$ = class_($2,$4,$6,stringtable.add_string(curr_filename)); }

The class constructor builds a Class tree node with the four arguments as children. Because the
phyla (types) of the arguments are declared, the C++ type checker enforces that the class constructor
is applied only to arguments of the appropriate type. See Section 6.5 and cool-tree.aps to learn the
definitions of the other constructors.2

There is a real danger of getting confused because the same names are used repeatedly for different
entities in different contexts. In the example just above, small variations of the name class are used for
a terminal (CLASS), a non-terminal (class), a constructor (class), and a phylum (Class). These uses
are all distinct and mean different things. There is also a class member of the union declaration in
cool.y, which means yet something else. Most uses are distinguished consistently by capitalization, but
a few are not. When reading the code it is important to keep in mind the role of each symbol.

1The name class is chosen to avoid a conflict with the C++ keyword class.
2Comments in cool-tree.aps begin with two hyphens “– –”.

4

6.2 AST Lists

List phyla have a distinct set of operations for constructing and accessing lists. Note that the AST
package uses its own definition of lists, which is distinct from and has different operations than the list
type defined in list.h.

For each phylum named X there is a phylum called Xs (except for Classes, which is a list of Class
nodes) of type List[X]. List functions are defined automatically for each list. For the Class phylum
some of the list functions and methods are:

Classes nil_Classes();

Classes single_Classes(Class_);

Classes append_Classes(Classes,Classes);

Class_ nth(int index);

int len();

These functions will be familiar to anyone with a passing knowledge of Lisp or Scheme. The function
nil phylums() returns an empty list of type phylum. The function single phylums makes a list of
length 1 out of its phylum argument. The function append phylums appends two lists of phylums. The
method nth selects the index’th element of its list argument. The method len returns the length of the
list.

AST lists also have a simple list iterator. There is a method first that returns the index of the first
element of the list, a predicate more that is false if its index argument is the last element of the list,
and a method next that returns the next index of the list. This iterator is quite naive and inefficient; to
find the nth element of the list, up to n elements of the list must be examined. However, it is simple to
understand and use. The list functions are defined in cool-X-tree.h and tree.h. A typical use of the
iterator functions to walk through a list l is:

for(int i = l->first(); l->more(i); i = l->next(i))

{ . . . do something with l->nth(i) . . . }

6.3 The AST Class Hierarchy

With the exception of lists, all AST classes are derived from the class tree node. All of the lists are lists
of tree nodes. The tree node class and the AST list template are defined in tree.h.

The tree node class definition contains everything needed in an abstract syntax tree node except
information specific to particular constructors. There is a protected data member line number, the line
number where the expression corresponding to the AST node appeared in the source file. The line number
is used by a Cool compiler to give good error messages.

Several functions are defined on all tree nodes. The important functions are: dump, which pretty
prints an AST and get line number, which is a selector for the corresponding data member.

Each of the phyla is a class derived directly from tree node. As stated previously, the phyla exist
primarily to group related constructors together and as such do not add much new functionality.

Each of the constructors is a class derived from the appropriate phyla. Each of the constructor classes
defines a function of the same name that can be used to build AST nodes. The dump function is also
defined automatically for each constructor.

5

6.4 Class Members

Each class definition of the tree package comes with a number of members. Some of the member functions
are discussed above. This section describes the data members and some more (but not all) of the rest of
the functions, as well as how to add new members to the classes.

Each constructor has data members defined for each component of that constructor. The name of
the member is the name of the field in the constructor, and it is only visible to member functions of the
constructor’s class or derived classes. For example, the class constructor has four data members:

Symbol name;

Symbol parent;

Features features;

Symbol filename;

Here is a complete use of one member:

class__class c;

Symbol p;

Symbol class__class::get_parent() { return parent; }

c = class(idtable.add_string("Foo",3),idtable.add_string("Bar"),nil_Features(),

stringtable.add_string("filename"));

p = c->get_parent(); // Sets p to the symbol for "Bar"

It will be useful in writing a Cool compiler to extend the AST with new functions such as get parent.
Simply modify the cool-tree.h file to add functions to the class of the appropriate phylum or constructor.

6.5 The Constructors

This section briefly describes each constructor and its role in the compiler. Each constructor corresponds
to a portion of the Cool grammar. The order of arguments to a constructor follows the order in which
symbols appear in productions in the Cool syntax specification in the manual. This correspondence
between constructors and program syntax should make clear how to use the arguments of constructors.
It may be helpful to read this section in conjunction with cool-tree.aps.

• program

This constructor is applied at the end of parsing to the final list of classes. The only needed use of
this constructor is already in the skeleton cool.y.

• class

This constructor builds a class node from two types and a list of features. See the examples above.

• method

This is one of the two constructors in the Feature phylum. Use this constructor to build AST
nodes for methods. Note that the second argument is a list of Formals.

• attr

This is the constructor for attributes. The init field is for the expression that is the optional
initialization.

6

• formal

This is the constructor for formal parameters in method definitions. The field names are self-
explanatory.

• branch

This is the single constructor in the Case phylum. A branch of a case expression has the form

name : typeid => expr;

which corresponds to the field names in the obvious way. Use this constructor to build an AST for
each branch of a case expression.

• assign

This is the constructor for assignment expressions.

• static dispatch and dispatch

There are two different kinds of dispatch in Cool and they have distinct constructors. See the Cool
Reference Manual for a discussion of static vs. normal dispatch. Note there is a shorthand for
dispatch that omits the self parameter. Don’t use the no expr constructor in place of self; you
need to fill in the symbol for self for the rest of the compiler to work correctly.

• cond

This is the constructor for if-then-else expressions.

• loop

This is the constructor for loop-pool expressions.

• typcase

This constructor builds an AST for a case expression. Note that the second argument is a list of
case branches (see the branch constructor above).

• block

This is the constructor for {...} block expressions.

• let

This is the constructor for let expressions. Note that the let constructor only allows one identifier.
When parsing a let expression with multiple identifiers, it should be transformed into nested lets
with single identifiers, as described in the semantics for let in the Cool Reference Manual.

• plus

This is the constructor for + expressions.

• sub

This is the constructor for − expressions.

• mul

This is the constructor for ∗ expressions.

• divide

This is the constructor for / expressions.

7

• neg

This is the constructor for ~ expressions.

• lt

This is the constructor for < expressions.

• eq

This is the constructor for = expressions.

• leq

This is the constructor for <= expressions.

• comp

This is the constructor for not expressions.

• int const

This is the constructor for integer constants.

• bool const

This is the constructor for boolean constants.

• string const

This is the constructor for string constants.

• new

This is the constructor for new expressions.

• isvoid

This is the constructor for isvoid expressions.

• no expr

This constructor takes no arguments. Use no expr where constructor arguments are missing because
an optional expression is omitted, except for a missing self in a dispatch expression (see the
discussion of dispatch above).

• object

This constructor is for expressions that are just object identifiers. Note that object identifiers
are used in many places in the syntax, but there is only one production for object identifiers as
expressions.

6.6 Tips on Using the Tree Package

There are a few common errors people make using a tree package.

• The tree package implements an abstract data type. Violating the interface (e.g., by casting, pointer
arithmetic, etc.) invites disaster. Stick to the interface as it is defined. When adding new members
to the class declarations, be careful that those members do not perturb the interface for the existing
functions.

• The value NULL is not a valid component of any AST. Never use NULL as an argument to a con-
structor. Use nil phylum to create empty lists.

8

• All tree nodes and lists are distinct. A test such as

if (x == nil_Expression()) { ... }

is always false, because nil Expression() creates a new empty list each time it is used. To check
whether a list is empty, use the len method (see tree.h).

• It is also pointless to compare with childless tree nodes. For example,

if (x == no_expr()) { ... }

is always false, because no expr creates a new AST each time it is called. Define a virtual method
to determine the constructor of x (see Section 6.4).

• The tree package functions perform checks to ensure that trees are used correctly. If something bad
is detected, the function fatal error is invoked to terminate execution. To determine where the
problem lies it is best to use the debugger dbx or gdb. Set a breakpoint on fatal error and use
the where command to find out what routine caused the error.

9

