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Lecture Outine

• Why Automatic Memory Management?

• Garbage Collection

• Three Techniques
– Mark and Sweep
– Stop and Copy
– Reference Counting
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Why Automatic Memory Management?

• Storage management is still a hard problem in modern 
programming

• C and C++ programs have many storage bugs
– forgetting to free unused memory
– dereferencing a dangling pointer
– overwriting parts of a data structure by accident
– and so on...

• Storage bugs are hard to find
– a bug can lead to a visible effect far away in time and program text 

from the source
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Type Safety and Memory Management

• Can types prevent errors in programs with 
manual allocation and deallocation of memory?
–  some fancy type systems (linear types) were designed 

for this purpose but they complicate programming 
significantly

• Currently, if you want type safety then you must 
use automatic memory management 
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Automatic Memory Management

• This is an old problem: 
– studied since the 1950s for LISP

• There are well-known techniques for completely 
automatic memory management

• Became mainstream with the popularity of Java
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The Basic Idea

• When an object is created, unused space is 
automatically allocated
– In Cool, new objects are created by new X

• After a while there is no more unused space

• Some space is occupied by objects that will 
never be used again
– This space can be freed to be reused later
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The Basic Idea (Cont.)

• How can we tell whether an object will “never be 
used again”?
– in general, impossible to tell
– we will use heuristics 

• Observation: a program can use only the objects 
that it can find:
              let x : A ← new A in { x ← y; ... }
– After x ← y there is no way to access the newly 

allocated object
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Garbage

• An object x is reachable if and only if:
– a register contains a pointer to x, or
– another reachable object y contains a pointer to x

• You can find all reachable objects by starting from 
registers and following all the pointers

• An unreachable object can never be used
– such objects are garbage
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Reachability is an Approximation

• Consider the program:
    main() {
        x ← new A;
        foo()
    }

• The A object is dead when calling foo and will 
never be used.

• But it will not be garbage collected until the 
program terminates
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Tracing Reachable Values in Coolc

• In coolc, the only registers are the accumulator and the stack 
pointer

• The accumulator
– points to an object
– and this object may point to other objects, etc.

• The stack pointer is more complex
– each stack frame contains pointers (e.g., method parameters)
– the stack frames also contain non-pointers (e.g., return address)
– if we know the layout of the frames we can find the pointers in them
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A Simple Example

• In Coolc we start tracing from acc and stack
– These are the roots

• Note B and D are unreachable from acc and 
stack
– Thus we can reuse their storage

A B C

Frame 1 Frame 2

D Eacc

SP
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Elements of Garbage Collection

• Every garbage collection scheme has the 
following steps
1. Allocate space as needed for new objects
2. When space runs out:

a) Compute what objects might be used again 
(generally by tracing objects reachable from a set 
of “root” registers)

b) Free the space used by objects not found in (a)

• Some strategies perform garbage collection 
before the space actually runs out



13

Mark and Sweep

• When memory runs out, GC executes two phases
– the mark phase: traces reachable objects
– the sweep phase: collects garbage objects

• Every object has an extra bit: the mark bit
– reserved for memory management
– initially the mark bit is 0
– set to 1 for the reachable objects in the mark phase
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The Mark Phase

let todo = { all roots }
while todo ≠ ∅ do
     pick v ∈ todo
     todo ← todo - { v }
     if mark(v) = 0 then      (* v is unmarked yet *)
         mark(v) ← 1
         let v1,...,vn be the pointers contained in v
         todo ← todo ∪ {v1,...,vn}
    fi
od
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The Sweep Phase

• The sweep phase scans the heap looking for 
objects with mark bit 0
– these objects were not visited in the mark phase
– they are garbage

• Any such object is added to the free list

• The objects with a mark bit 1 have their mark bit 
reset to 0
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The Sweep Phase (Cont.)

(* sizeof(p) is the size of block starting at p *)
p ← bottom of heap
while p < top of heap do
   if mark(p) = 1 then 
       mark(p) ← 0
   else
       add block p...(p+sizeof(p)-1) to freelist
   fi
   p ← p + sizeof(p)
od
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Mark and Sweep Example

A B C D Froot E

free

0 0 0 0 0 0

A B C D Froot E

free

1 0 1 0 0 1
After mark:

A B C D Froot E

free

0 0 0 0 0 0

After sweep:
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Details

• While conceptually simple, this algorithm has a 
number of tricky details
– typical of GC algorithms

• A serious problem with the mark phase
– it is invoked when we are out of space
– yet it needs space to construct the todo list
– the size of the todo list is unbounded so we cannot 

reserve space for it a priori
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Mark and Sweep: Details

• The todo list is used as an auxiliary data structure 
to perform the reachability analysis

• There is a trick that allows the auxiliary data to be 
stored in the objects themselves
– pointer reversal: when a pointer is followed it is 

reversed to point to its parent

• Similarly, the free list is stored in the free objects 
themselves
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Evaluation of Mark and Sweep

• Space for a new object is allocated from the free list
– a block large enough is picked
– an area of the necessary size is allocated from it
– the left-over is put back in the free list

• Mark and sweep can fragment the memory 

• Advantage: objects are not moved during GC
– no need to update the pointers to objects
– works for languages like C and C++
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Another Technique: Stop and Copy

• Memory is organized into two areas
– old space: used for allocation
– new space: used as a reserve for GC 

old space new space

heap pointer

• The heap pointer points to the next free word in 
the old space
• allocation just advances the heap pointer



22

Stop and Copy Garbage Collection

• Starts when the old space is full

• Copies all reachable objects from old space into 
new space
– garbage is left behind
– after the copy phase the new space uses less space 

than the old one before the collection

• After the copy the roles of the old and new 
spaces are reversed and the program resumes
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Example of Stop and Copy Garbage Collection

A B C D Froot E

Before collection:

new 
space

A C F

root

new space

After collection:

free

heap pointer
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Implementation of Stop and Copy

• We need to find all the reachable objects, as for mark and 
sweep

• As we find a reachable object we copy it into the new 
space
– And we have to fix ALL pointers pointing to it!

• As we copy an object we store in the old copy a 
forwarding pointer to the new copy
– when we later reach an object with a forwarding pointer we know it 

was already copied



25

Implementation of Stop and Copy (Cont.)

• We still have the issue of how to implement the 
traversal without using extra space

• The following trick solves the problem:
– partition the new space in three contiguous regions

copied and scanned

scan

copied objects 
whose pointer
fields were followed

copied objects 
whose pointer 
fields were NOT
followed

emptycopied

allocstart
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Stop and Copy. Example (1)

A B C D Froot E new 
space

• Before garbage collection
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Stop and Copy. Example (2)

A B C D Froot E

• Step 1: Copy the objects pointed to by roots and 
set forwarding pointers

A

scan
alloc
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Stop and Copy. Example (3)

A B C D Froot E

scan
alloc

• Step 2: Follow the pointer in the next unscanned 
object (A)
– copy the pointed-to objects (just C in this case)
– fix the pointer in A 
– set forwarding pointer

CA
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Stop and Copy. Example (4)

A B C D Froot E

scan
alloc

CA

• Follow the pointer in the next unscanned object (C)
– copy the pointed objects (F in this case)

F
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Stop and Copy. Example (5)

A B C D Froot E

scan
alloc

CA F

• Follow the pointer in the next unscanned object (F)
– the pointed object (A) was already copied. Set the 

pointer same as the forwading pointer
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Stop and Copy. Example (6)

root scan
alloc

CA F

• Since scan caught up with alloc we are done
• Swap the role of the spaces and resume the 

program

new space
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The Stop and Copy Algorithm

while scan ≠ alloc do
     let O be the object at scan pointer
     for each pointer p contained in O do
         find O’ that p points to 
         if O’ is without a forwarding pointer
               copy O’ to new space (update alloc pointer)
               set 1st word of old O’ to point to the new copy
               change p to point to the new copy of O’
         else 
               set p in O equal to the forwarding pointer 
         fi
     end for
     increment scan pointer to the next object
od
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Details of Stop and Copy

• As with mark and sweep, we must be able to tell 
how large an object is when we scan it
– and we must also know where the pointers are inside 

the object

• We must also copy any objects pointed to by the 
stack and update pointers in the stack
– this can be an expensive operation
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Evauation of Stop and Copy

• Stop and copy is generally believed to be the fastest GC 
technique

• Allocation is very cheap
– just increment the heap pointer

• Collection is relatively cheap
– especially if there is a lot of garbage
– only touch reachable objects

• But some languages do not allow copying 
– C, C++
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Why Doesn’t C Allow Copying?

• Garbage collection relies on being able to find all 
reachable objects
– and it needs to find all pointers in an object

• In C or C++ it is impossible to identify the 
contents of objects in memory
– E.g., a sequence of two memory words might be

• A  list cell (with data and next fields)
• A binary tree node (with left and right fields)

– Thus we cannot tell where all the pointers are
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Conservative Garbage Collection

• But it is Ok to be conservative:
– if a memory word looks like a pointer it is considered a pointer

• it must be aligned
• it must point to a valid address in the data segment

– all such pointers are followed and we overestimate the set of 
reachable objects

• But we still cannot move objects because we cannot 
update pointers to them
– what if what we thought is a pointer is actually an account 

number?
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Reference Counting

• Rather that wait for memory to be exhausted, try 
to collect an object when there are no more 
pointers to it

• Store in each object the number of pointers to 
that object
– this is the reference count

• Each assignment operation manipulates the 
reference count
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Implementation of Reference Counting

• new returns an object with reference count 1
• Let rc(o) be the reference count of o

• Assume x, y point to objects o, p

• Every assignment x ← y must be changed:
  rc(p) ← rc(p) + 1
  rc(o) ← rc(o) - 1
  if(rc(o) == 0) then mark o as free
  x ← y
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Evaluation of Reference Counting

• Advantages:
– easy to implement
– collects garbage incrementally without large pauses in 

the execution

• Disadvantages:
– manipulating reference counts at each assignment is 

very slow
– cannot collect circular structures
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Evaluation of Garbage Collection

• Automatic memory management prevents serious 
storage bugs

• But reduces programmer control
– e.g., layout of data in memory
– e.g., when is memory deallocated

• Pauses problematic in real-time applications
• Memory leaks possible (even likely)
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Evaluation of Garbage Collection

• Garbage collection is very important

• Researchers are working on advanced garbage 
collection algorithms:
– concurrent: allow the program to run while the 

collection is happening
– generational: do not scan long-lived objects at every 

collection
– parallel: several collectors working in parallel


