
1

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications

Automatic Memory Management

CS143
Lecture 17

2

Lecture Outine

• Why Automatic Memory Management?

• Garbage Collection

• Three Techniques
– Mark and Sweep
– Stop and Copy
– Reference Counting

3

Why Automatic Memory Management?

• Storage management is still a hard problem in modern
programming

• C and C++ programs have many storage bugs
– forgetting to free unused memory
– dereferencing a dangling pointer
– overwriting parts of a data structure by accident
– and so on...

• Storage bugs are hard to find
– a bug can lead to a visible effect far away in time and program text

from the source

4

Type Safety and Memory Management

• Can types prevent errors in programs with
manual allocation and deallocation of memory?
– some fancy type systems (linear types) were designed

for this purpose but they complicate programming
significantly

• Currently, if you want type safety then you must
use automatic memory management

5

Automatic Memory Management

• This is an old problem:
– studied since the 1950s for LISP

• There are well-known techniques for completely
automatic memory management

• Became mainstream with the popularity of Java

6

The Basic Idea

• When an object is created, unused space is
automatically allocated
– In Cool, new objects are created by new X

• After a while there is no more unused space

• Some space is occupied by objects that will
never be used again
– This space can be freed to be reused later

7

The Basic Idea (Cont.)

• How can we tell whether an object will “never be
used again”?
– in general, impossible to tell
– we will use heuristics

• Observation: a program can use only the objects
that it can find:
 let x : A ← new A in { x ← y; ... }
– After x ← y there is no way to access the newly

allocated object

8

Garbage

• An object x is reachable if and only if:
– a register contains a pointer to x, or
– another reachable object y contains a pointer to x

• You can find all reachable objects by starting from
registers and following all the pointers

• An unreachable object can never be used
– such objects are garbage

9

Reachability is an Approximation

• Consider the program:
 main() {
 x ← new A;
 foo()
 }

• The A object is dead when calling foo and will
never be used.

• But it will not be garbage collected until the
program terminates

10

Tracing Reachable Values in Coolc

• In coolc, the only registers are the accumulator and the stack
pointer

• The accumulator
– points to an object
– and this object may point to other objects, etc.

• The stack pointer is more complex
– each stack frame contains pointers (e.g., method parameters)
– the stack frames also contain non-pointers (e.g., return address)
– if we know the layout of the frames we can find the pointers in them

11

A Simple Example

• In Coolc we start tracing from acc and stack
– These are the roots

• Note B and D are unreachable from acc and
stack
– Thus we can reuse their storage

A B C

Frame 1 Frame 2

D Eacc

SP

12

Elements of Garbage Collection

• Every garbage collection scheme has the
following steps
1. Allocate space as needed for new objects
2. When space runs out:

a) Compute what objects might be used again
(generally by tracing objects reachable from a set
of “root” registers)

b) Free the space used by objects not found in (a)

• Some strategies perform garbage collection
before the space actually runs out

13

Mark and Sweep

• When memory runs out, GC executes two phases
– the mark phase: traces reachable objects
– the sweep phase: collects garbage objects

• Every object has an extra bit: the mark bit
– reserved for memory management
– initially the mark bit is 0
– set to 1 for the reachable objects in the mark phase

14

The Mark Phase

let todo = { all roots }
while todo ≠ ∅ do
 pick v ∈ todo
 todo ← todo - { v }
 if mark(v) = 0 then (* v is unmarked yet *)
 mark(v) ← 1
 let v1,...,vn be the pointers contained in v
 todo ← todo ∪ {v1,...,vn}
 fi
od

15

The Sweep Phase

• The sweep phase scans the heap looking for
objects with mark bit 0
– these objects were not visited in the mark phase
– they are garbage

• Any such object is added to the free list

• The objects with a mark bit 1 have their mark bit
reset to 0

16

The Sweep Phase (Cont.)

(* sizeof(p) is the size of block starting at p *)
p ← bottom of heap
while p < top of heap do
 if mark(p) = 1 then
 mark(p) ← 0
 else
 add block p...(p+sizeof(p)-1) to freelist
 fi
 p ← p + sizeof(p)
od

17

Mark and Sweep Example

A B C D Froot E

free

0 0 0 0 0 0

A B C D Froot E

free

1 0 1 0 0 1
After mark:

A B C D Froot E

free

0 0 0 0 0 0

After sweep:

18

Details

• While conceptually simple, this algorithm has a
number of tricky details
– typical of GC algorithms

• A serious problem with the mark phase
– it is invoked when we are out of space
– yet it needs space to construct the todo list
– the size of the todo list is unbounded so we cannot

reserve space for it a priori

19

Mark and Sweep: Details

• The todo list is used as an auxiliary data structure
to perform the reachability analysis

• There is a trick that allows the auxiliary data to be
stored in the objects themselves
– pointer reversal: when a pointer is followed it is

reversed to point to its parent

• Similarly, the free list is stored in the free objects
themselves

20

Evaluation of Mark and Sweep

• Space for a new object is allocated from the free list
– a block large enough is picked
– an area of the necessary size is allocated from it
– the left-over is put back in the free list

• Mark and sweep can fragment the memory

• Advantage: objects are not moved during GC
– no need to update the pointers to objects
– works for languages like C and C++

21

Another Technique: Stop and Copy

• Memory is organized into two areas
– old space: used for allocation
– new space: used as a reserve for GC

old space new space

heap pointer

• The heap pointer points to the next free word in
the old space
• allocation just advances the heap pointer

22

Stop and Copy Garbage Collection

• Starts when the old space is full

• Copies all reachable objects from old space into
new space
– garbage is left behind
– after the copy phase the new space uses less space

than the old one before the collection

• After the copy the roles of the old and new
spaces are reversed and the program resumes

23

Example of Stop and Copy Garbage Collection

A B C D Froot E

Before collection:

new
space

A C F

root

new space

After collection:

free

heap pointer

24

Implementation of Stop and Copy

• We need to find all the reachable objects, as for mark and
sweep

• As we find a reachable object we copy it into the new
space
– And we have to fix ALL pointers pointing to it!

• As we copy an object we store in the old copy a
forwarding pointer to the new copy
– when we later reach an object with a forwarding pointer we know it

was already copied

25

Implementation of Stop and Copy (Cont.)

• We still have the issue of how to implement the
traversal without using extra space

• The following trick solves the problem:
– partition the new space in three contiguous regions

copied and scanned

scan

copied objects
whose pointer
fields were followed

copied objects
whose pointer
fields were NOT
followed

emptycopied

allocstart

26

Stop and Copy. Example (1)

A B C D Froot E new
space

• Before garbage collection

27

Stop and Copy. Example (2)

A B C D Froot E

• Step 1: Copy the objects pointed to by roots and
set forwarding pointers

A

scan
alloc

28

Stop and Copy. Example (3)

A B C D Froot E

scan
alloc

• Step 2: Follow the pointer in the next unscanned
object (A)
– copy the pointed-to objects (just C in this case)
– fix the pointer in A
– set forwarding pointer

CA

29

Stop and Copy. Example (4)

A B C D Froot E

scan
alloc

CA

• Follow the pointer in the next unscanned object (C)
– copy the pointed objects (F in this case)

F

30

Stop and Copy. Example (5)

A B C D Froot E

scan
alloc

CA F

• Follow the pointer in the next unscanned object (F)
– the pointed object (A) was already copied. Set the

pointer same as the forwading pointer

31

Stop and Copy. Example (6)

root scan
alloc

CA F

• Since scan caught up with alloc we are done
• Swap the role of the spaces and resume the

program

new space

32

The Stop and Copy Algorithm

while scan ≠ alloc do
 let O be the object at scan pointer
 for each pointer p contained in O do
 find O’ that p points to
 if O’ is without a forwarding pointer
 copy O’ to new space (update alloc pointer)
 set 1st word of old O’ to point to the new copy
 change p to point to the new copy of O’
 else
 set p in O equal to the forwarding pointer
 fi
 end for
 increment scan pointer to the next object
od

33

Details of Stop and Copy

• As with mark and sweep, we must be able to tell
how large an object is when we scan it
– and we must also know where the pointers are inside

the object

• We must also copy any objects pointed to by the
stack and update pointers in the stack
– this can be an expensive operation

34

Evauation of Stop and Copy

• Stop and copy is generally believed to be the fastest GC
technique

• Allocation is very cheap
– just increment the heap pointer

• Collection is relatively cheap
– especially if there is a lot of garbage
– only touch reachable objects

• But some languages do not allow copying
– C, C++

35

Why Doesn’t C Allow Copying?

• Garbage collection relies on being able to find all
reachable objects
– and it needs to find all pointers in an object

• In C or C++ it is impossible to identify the
contents of objects in memory
– E.g., a sequence of two memory words might be

• A list cell (with data and next fields)
• A binary tree node (with left and right fields)

– Thus we cannot tell where all the pointers are

36

Conservative Garbage Collection

• But it is Ok to be conservative:
– if a memory word looks like a pointer it is considered a pointer

• it must be aligned
• it must point to a valid address in the data segment

– all such pointers are followed and we overestimate the set of
reachable objects

• But we still cannot move objects because we cannot
update pointers to them
– what if what we thought is a pointer is actually an account

number?

37

Reference Counting

• Rather that wait for memory to be exhausted, try
to collect an object when there are no more
pointers to it

• Store in each object the number of pointers to
that object
– this is the reference count

• Each assignment operation manipulates the
reference count

38

Implementation of Reference Counting

• new returns an object with reference count 1
• Let rc(o) be the reference count of o

• Assume x, y point to objects o, p

• Every assignment x ← y must be changed:
 rc(p) ← rc(p) + 1
 rc(o) ← rc(o) - 1
 if(rc(o) == 0) then mark o as free
 x ← y

39

Evaluation of Reference Counting

• Advantages:
– easy to implement
– collects garbage incrementally without large pauses in

the execution

• Disadvantages:
– manipulating reference counts at each assignment is

very slow
– cannot collect circular structures

40

Evaluation of Garbage Collection

• Automatic memory management prevents serious
storage bugs

• But reduces programmer control
– e.g., layout of data in memory
– e.g., when is memory deallocated

• Pauses problematic in real-time applications
• Memory leaks possible (even likely)

41

Evaluation of Garbage Collection

• Garbage collection is very important

• Researchers are working on advanced garbage
collection algorithms:
– concurrent: allow the program to run while the

collection is happening
– generational: do not scan long-lived objects at every

collection
– parallel: several collectors working in parallel

