# Register Allocation 

## CS143 <br> Lecture 16

Instructor: Fredrik Kjolstad<br>Slide design by Prof. Alex Aiken, with modifications

## Lecture Outline

- Memory Hierarchy Management
- Register Allocation
- Register interference graph
- Graph coloring heuristics
- Spilling
- Cache Management


## The Memory Hierarchy



Main memory 20-100 cycles 4GB-32+G

Disk

$0.5-5 \mathrm{M}$ cycles 1 -10TB’s

## Managing the Memory Hierarchy

- Most programs are written as if there are only two kinds of memory: main memory and disk
- Programmer is responsible for moving data from disk to memory (e.g., file I/O)
- Hardware is responsible for moving data between memory and caches
- Compiler is responsible for moving data between memory and registers


## Current Trends

- Power usage limits
- Size and speed of registers/caches
- Speed of processors
- But
- The cost of a cache miss is very high
- Typically requires 2-3 caches to bridge fast processor with large main memory
- It is very important to:
- Manage registers properly
- Manage caches properly
- Compilers are good at managing registers


## The Register Allocation Problem

- Intermediate code use unlimited temporaries
- Simplifies code generation and optimization
- Complicates final translation to assembly
- Typical intermediate code uses too many temporaries


## The Register Allocation Problem (Cont.)

- The problem:

Rewrite the intermediate code to use no more temporaries than there are machine registers

- Method:
- Assign multiple temporaries to each register
- But without changing the program behavior


## History

- Register allocation is as old as compilers
- Register allocation was used in the original FORTRAN compiler in the '50s
- Very crude algorithms
- A breakthrough came in 1980
- Register allocation scheme based on graph coloring
- Relatively simple, global and works well in practice


## An Example

- Consider the program

$$
\begin{aligned}
& a:=c+d \\
& e:=a+b \\
& f:=e-1
\end{aligned}
$$

- Can allocate a, e, and fall to one register $\left(r_{1}\right)$ :

$$
\begin{aligned}
& r_{1}:=r_{2}+r_{3} \\
& r_{1}:=r_{1}+r_{4} \\
& r_{1}:=r_{1}-1
\end{aligned}
$$

- A dead temporary is not needed
- A dead temporary can be reused


## The Idea

Temporaries $t_{1}$ and $t_{2}$ can share the same register if at any point in the program at most one of $t_{1}$ or $t_{2}$ is live.

## Or

If $t_{1}$ and $t_{2}$ are live at the same time, they cannot share a register

## Algorithm: Part I

- Compute live variables for each point:



## The Register Interference Graph

- Construct an undirected graph
- A node for each temporary
- An edge between $t_{1}$ and $t_{2}$ if they are live simultaneously at some point in the program
- This is the register interference graph (RIG)
- Two temporaries can be allocated to the same register if there is no edge connecting them


## Example

- For our example:

- E.g., b and c cannot be in the same register
- E.g., b and d could be in the same register


## Notes on Register Interference Graphs

- Extracts exactly the information needed to characterize legal register assignments
- Gives a global (i.e., over the entire flow graph) picture of the register requirements
- After RIG construction the register allocation algorithm is architecture independent


## Definitions

- A coloring of a graph is an assignment of colors to nodes, such that nodes connected by an edge have different colors
- A graph is $k$-colorable if it has a coloring with $k$ colors



## Register Allocation Through Graph Coloring

- In our problem, colors = registers
- We need to assign colors (registers) to graph nodes (temporaries)
- Let $\mathrm{k}=$ number of machine registers
- If the RIG is k-colorable then there is a register assignment that uses no more than $k$ registers


## Graph Coloring Example

- Consider the example RIG

- There is no coloring with less than 4 colors
- There are 4 -colorings of this graph


## Example Review



## Example After Register Allocation

- Under this coloring the code becomes:



## Computing Graph Colorings

- How do we compute graph colorings?
- It isn't easy:

1. This problem is very hard (NP-hard). No efficient algorithms are known.

- Solution: use heuristics

2. A coloring might not exist for a given number of registers

- Solution: later


## Graph Coloring Heuristic

- Observation:
- Pick a node t with fewer than $k$ neighbors in RIG
- Eliminate $t$ and its edges from RIG
- If resulting graph is k-colorable, then so is the original graph
- Why?
- Let $c_{1}, \ldots, c_{n}$ be the colors assigned to the neighbors of $t$ in the reduced graph
- Since $n<k$ we can pick some color for $t$ that is different from those of its neighbors


## Graph Coloring Heuristic

- The following works well in practice:
- Pick a node t with fewer than $k$ neighbors
- Put t on a stack and remove it from the RIG
- Repeat until the graph has one node
- Assign colors to nodes on the stack
- Start with the last node added
- At each step pick a color different from those assigned to already colored neighbors


## Graph Coloring Example (1)

- Start with the RIG and with $\mathrm{k}=4$ :



## Stack: \{\}

- Remove a


## Graph Coloring Example (2)



Stack: $\{a\}$

- Remove d


## Graph Coloring Example (3)

- Note: all nodes now have fewer than 4 neighbors



## Stack: $\{d, a\}$

- Remove c


## Graph Coloring Example (4)



Stack: $\{c, d, a\}$

- Remove b


## Graph Coloring Example (5)



Stack: $\{b, c, d, a\}$

- Remove e


## Graph Coloring Example (6)



Stack: $\{e, b, c, d, a\}$

- Remove f


## Graph Coloring Example (7)

- Now start assigning colors to nodes, starting with the top of the stack

Stack: \{f, e, b, c, d, a\}

## Graph Coloring Example (8)

$r_{1} f \bullet$
Stack: $\{e, b, c, d, a\}$

## Graph Coloring Example (9)

$$
\begin{aligned}
& r_{1} f \\
& r_{2} e
\end{aligned}
$$

## Stack: $\{b, c, d, a\}$

- e must be in a different register from f


## Graph Coloring Example (10)



Stack: $\{c, d, a\}$

## Graph Coloring Example (11)



Stack: $\{d, a\}$

## Graph Coloring Example (12)



- d can be in the same register as b


## Graph Coloring Example (13)



## What if the Heuristic Fails?

- What if all nodes have k or more neighbors ?
- Example: Try to find a 3-coloring of the RIG:



## What if the Heuristic Fails?

- Remove a and get stuck (as shown below)
- Pick a node as a candidate for spilling
- A spilled temporary "lives" in memory
- Assume that $f$ is picked as a candidate



## What if the Heuristic Fails?

- Remove $f$ and continue the simplification
- Simplification now succeeds: b, d, e, c



## What if the Heuristic Fails?

- Eventually we must assign a color to f
- We hope that among the 4 neighbors of $f$ we use less than 3 colors $\Rightarrow$ optimistic coloring



## Spilling

- If optimistic coloring fails, we spill f
- Allocate a memory location for f
- Typically in the current stack frame
- Call this address fa
- Before each operation that reads f, insert $\mathrm{f}:=$ load fa
- After each operation that writes $f$, insert store f, fa


## Spilling Example

- This is the new code after spilling $f$



## A Problem

- This code reuses the register name f
- Correct, but suboptimal
- Should use distinct register names whenever possible
- Allows different uses to have different colors


## Spilling Example

- This is the new code after spilling $f$



## Recomputing Liveness Information

- The new liveness information after spilling:



## Recomputing Liveness Information

- New liveness information is almost as before
- Note $f$ has been split into three temporaries
- fi is live only
- Between a fi := load fa and the next instruction
- Between a store fi, fa and the preceding instr.
- Spilling reduces the live range of $f$
- And thus reduces its interferences
- Which results in fewer RIG neighbors


## Recompute RIG After Spilling

- Some edges of the spilled node are removed
- In our case f still interferes only with c and d
- And the resulting RIG is 3-colorable



## Spilling Notes

- Additional spills might be required before a coloring is found
- The tricky part is deciding what to spill
- But any choice is correct
- Possible heuristics:
- Spill temporaries with most conflicts
- Spill temporaries with few definitions and uses
- Avoid spilling in inner loops


## Caches

- Compilers are very good at managing registers
- Much better than a programmer could be
- Compilers are not good at managing caches - This problem is still left to programmers
- It is still an open question how much a compiler can do to improve cache performance
- Compilers can, and a few do, perform some cache optimizations


## Cache Optimization

- Consider the loop

$$
\begin{aligned}
& \text { for(j }:=1 ; j<10 ; j++) \\
& \text { for(i }:=1 ; i<1000 ; i++) \\
& \\
& a[i] \text { * }=b[i]
\end{aligned}
$$

- This program has terrible cache performance
- Why?


## Cache Optimization (Cont.)

- Consider the optimized loop:

$$
\begin{gathered}
\text { for( } \mathrm{i}:=1 ; \mathrm{i}<1000 ; \mathrm{i}++) \\
\text { for(j }:=1 ; \mathrm{j}<10 ; j++) \\
\mathrm{a}[i]{ }^{*}=b[i]
\end{gathered}
$$

- Computes the same thing
- But with much better cache behavior
- Might actually be more than 10x faster
- A compiler can perform this optimization
- called loop interchange


## Conclusions

- Register allocation is a "must have" in compilers:
- Because intermediate code uses too many temporaries
- Because it makes a big difference in performance
- Register allocation is more complicated for CISC machines

