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Lecture Outline

• Type systems and their expressiveness

• Type checking with SELF_TYPE in COOL

• Error recovery in semantic analysis
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Expressiveness of Static Type Systems

• Static type systems detect common errors

• But some correct programs are disallowed
– Some argue for dynamic type checking instead
– Others argue for more expressive static type checking

• But more expressive type systems are more 
complex
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Dynamic and Static Types

• The dynamic type of an object is the class C that 
is used in the “new C” expression that created it
– A run-time notion
– Even languages that are not statically typed have the 

notion of dynamic type

• The static type of an expression captures all 
dynamic types the expression could have
– A compile-time notion
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Dynamic and Static Types. (Cont.)

• In early type systems the set of static types 
correspond directly with the dynamic types

• Soundness theorem: for all expressions E
            dynamic_type(E) = static_type(E)
   (in all executions, E evaluates to values of the type 

inferred by the compiler)

• This gets more complicated in advanced type 
systems
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Dynamic and Static Types in COOL

• A variable of static type A can hold values of static 
type B, if B ≤ A 

class A { … } 
class B inherits A {…} 
class Main { 
   x:A ← new A; 
   … 
   x ← new B; 
   … 
} 

x has static 
type A

Here, x’s value has 
dynamic type A

Here, x’s value has 
dynamic type B
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Dynamic and Static Types

Soundness theorem for the Cool type system:
       ∀ E.   dynamic_type(E)  ≤  static_type(E) 

Why is this Ok?
– All operations that can be used on an object of type A 

can also be used on an object of type B ≤ A
• Such as fetching the value of an attribute
• Or invoking a method on the object

– Subclasses only add attributes or methods
– Methods can be redefined but with same type!
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An Example

class Count { 
   i : int ← 0; 
   inc () : Count { 
        { 
            i ← i + 1; 
            self; 
        } 
    }; 
};  

• Class Count incorporates 
a counter

• The inc method works for 
any subclass

• But there is problem 
lurking in the type system
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An Example (Cont.)

• Consider a subclass Stock of Count

class Stock inherits Count {  
   name : String; -- name of item 
};

class Main { 
  Stock a ← (new Stock).inc ();  
  …  a.name … 
};

• And the following use of Stock:

Type checking error !
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What Went Wrong?

•  (new Stock).inc()  has dynamic type Stock

• So it is legitimate to write 
         Stock a ← (new Stock).inc () 

• But this is not well-typed
– (new Stock).inc()  has static type Count 
– inc () : Count {…} 

• The type checker loses type information
– This makes inheriting inc useless
– So, we must redefine inc for each of the subclasses, with a 

specialized return type 
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SELF_TYPE to the Rescue 

• We will extend the type system

• Insight:
– inc returns “self”
– Therefore the return value has same type as “self” 
– Which could be Count or any subtype of Count!

• Introduce the keyword SELF_TYPE to use for the return 
value of such functions
– We will also need to modify the typing rules to handle 

SELF_TYPE
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SELF_TYPE to the Rescue (Cont.)

• SELF_TYPE allows the return type of inc to change when 
inc is inherited

• Modify the declaration of inc to read
                   inc() : SELF_TYPE  { … }

• The type checker can now prove:
        C,M ⊢ (new Count).inc() : Count 
        C,M ⊢ (new Stock).inc() : Stock 

  

• The program from before is now well typed
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Notes About SELF_TYPE

• SELF_TYPE is not a dynamic type
– It is a static type
– It helps the type checker to keep better track of types

– It enables the type checker to accept more correct 
programs

• In short, having SELF_TYPE increases the 
expressive power of the type system
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SELF_TYPE and Dynamic Types (Example)

• What can be the dynamic type of the object 
returned by inc?
– Answer: whatever could be the type of “self”

class A inherits Count { } ; 
class B inherits Count { } ; 
class C inherits Count { } ;

– Answer: Count or any subtype of Count

           (inc could be invoked through any of these classes)
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SELF_TYPE and Dynamic Types (Example)

• In general, if SELF_TYPE appears textually in the class C 
as the declared type of E then
               dynamic_type(E) ≤ C

• Note: The meaning of SELF_TYPE depends on where it 
appears
– We write SELF_TYPEC to refer to an occurrence of SELF_TYPE 

in the body of C

• This suggests a typing rule:
                  SELF_TYPEC ≤ C                      (*)
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Type Checking

• Rule (*) has an important consequence:
– In type checking it is always safe to replace 

SELF_TYPEC by C

• This suggests one way to handle SELF_TYPE :
– Replace all occurrences of SELF_TYPEC by C

• This would be correct but it is like not having 
SELF_TYPE at all
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Operations on SELF_TYPE

• Recall the operations on types
– T1 ≤ T2             T1 is a subtype of T2

– lub(T1,T2)     the least-upper bound of T1 and T2

• We must extend these operations to handle 
SELF_TYPE
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Extending ≤

Let T1 and T2 be any types but SELF_TYPE
There are four cases in the definition of ≤

1. SELF_TYPEC ≤ SELF_TYPEC
• In Cool we never need to compare SELF_TYPEs coming from 

different classes

2. SELF_TYPEC ≤ T1  if C ≤ T1
• SELF_TYPEC can be any subtype of C
• This includes C itself 
• Thus this is the most flexible rule we can allow
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Extending ≤ (Cont.)

3.  T1 ≤ SELF_TYPEC always false
Note: SELF_TYPEC can denote any subtype of C. 

4. T1 ≤ T2 (according to the rules from before)

Based on these rules we can extend lub …
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Extending lub(T,T’)

Let T1 and T2 be any types but SELF_TYPE
Again there are four cases:
1. lub(SELF_TYPEC, SELF_TYPEC) = SELF_TYPEC

2. lub(SELF_TYPEC, T1) = lub(C, T1)
This is the best we can do because SELF_TYPEC ≤ C

3. lub(T1, SELF_TYPEC) = lub(C, T1)

4. lub(T1, T2) defined as before
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Where Can SELF_TYPE Appear in COOL? 

• The parser checks that SELF_TYPE appears only 
where a type is expected

• But SELF_TYPE is not allowed everywhere a type can 
appear:

1. class T inherits T’  {…}  
• T, T’ cannot be SELF_TYPE

2. x : T
• T can be SELF_TYPE
• An attribute whose type is ≤ SELF_TYPEC
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Where Can SELF_TYPE Appear in COOL?

3. let x : T in E
• T can be SELF_TYPE
• x has a type ≤ SELF_TYPEC

4. new T
• T can be SELF_TYPE
• Creates an object of the same type as self

5. m@T(E1,…,En)
• T cannot be SELF_TYPE



23

Where Can SELF_TYPE Not Appear in COOL?

6. m(x : T) : T’ { … }               
• Only T’ can be SELF_TYPE !

What could go wrong if T were SELF_TYPE?

class A {  foo(x : SELF_TYPE) : Bool  {…};  }; 
class B inherits A {  
     b : int;  
     foo(x : SELF_TYPE) : Bool { … x.b …};  }; 
… 
  let x : A ← new B in  … x.foo(new A); … 
…
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Typing Rules for SELF_TYPE

• Since occurrences of SELF_TYPE depend on the 
enclosing class we need to include that context 
during type checking

• Recall the form of a typing judgment:
            O,M,C ⊢ e : T 

   (An expression e occurring in the body of C has 
static type T given a variable type environment O 
and method signatures M)
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Type Checking Rules

• The next step is to design type rules using SELF_TYPE for each 
language construct

• Most of the rules remain the same except that ≤ and lub are the new 
ones

• Example: 

O(Id) = T0 
O,M,C ⊢ e1 : T0 
T1 ≤ T0 

O,M,C ⊢ Id ← e1 : T1
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What is Different?

• Recall the old rule for dispatch

O,M,C ⊢ e0 : T0 
  ⠇ 

O,M,C ⊢ en : Tn  
M(T0, f) = (T'1,…,T'n,T'n+1) 
T'n+1 ≠ SELF_TYPE 
Ti ≤ T'i     1 ≤ i ≤ n 

O,M,C ⊢ e0.f(e1,…,en) : T'n+1



27

What is Different?

• If the return type of the method is SELF_TYPE 
then the type of the dispatch is the type of the 
dispatch expression:

O,M,C ⊢ e0 : T0 
  ⠇ 

O,M,C ⊢ en : Tn  
M(T0, f) = (T'1,…,T'n, SELF_TYPE) 
Ti ≤ T'i     1 ≤ i ≤ n 

O,M,C ⊢ e0.f(e1,…,en) : T0
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What is Different?

• Note this rule handles the Stock example

• Formal parameters cannot be SELF_TYPE

• Actual arguments can be SELF_TYPE
– The extended ≤ relation handles this case

• The type T0 of the dispatch expression could be 
SELF_TYPE
– Which class is used to find the declaration of f?
– Answer: it is safe to use the class where the dispatch appears
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Static Dispatch

• Recall the original rule for static dispatch

O,M,C ⊢ e0 : T0 
  ⠇ 

O,M,C ⊢ en : Tn  
T0 ≤ T 
M(T, f) = (T1’,…,Tn’,Tn+1’) 
Tn+1’ ≠ SELF_TYPE 
Ti ≤ Ti’     1 ≤ i ≤ n 

O,M,C ⊢ e0@T.f(e1,…,en) : Tn+1’
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Static Dispatch

• If the return type of the method is SELF_TYPE 
we have:

O,M,C ⊢ e0 : T0 
  ⠇ 

O,M,C ⊢ en : Tn  
T0 ≤ T 
M(T, f) = (T1’,…,Tn’,SELF_TYPE) 
Ti ≤ Ti’    1 ≤ i ≤ n 

O,M,C ⊢ e0@T.f(e1,…,en) : T0
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Static Dispatch

• Why is this rule correct?

• If we dispatch a method returning SELF_TYPE in 
class T, don’t we get back a T?

• No. SELF_TYPE is the type of the self parameter, 
which may be a subtype of the class in which the 
method appears
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New Rules

• There are two new rules using SELF_TYPE

O,M,C ⊢ self : SELF_TYPEC

O,M,C ⊢ new SELF_TYPE : SELF_TYPEC

• There are a number of other places where 
SELF_TYPE is used
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Summary of SELF_TYPE

• The extended ≤ and lub operations can do a lot of the 
work. 

• SELF_TYPE can be used only in a few places. Be sure it 
isn’t used anywhere else.

• A use of SELF_TYPE always refers to any subtype of the 
current class
– The exception is the type checking of dispatch. The method return 

type of SELF_TYPE might have nothing to do with the current 
class
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Why Cover SELF_TYPE ?

• SELF_TYPE is a research idea
– It adds more expressiveness to the type system

• SELF_TYPE is itself not so important
– except for the project

• Rather, SELF_TYPE is meant to illustrate that type 
checking can be quite subtle

• In practice, there should be a balance between the 
complexity of the type system and its expressiveness



35

Error Recovery

• As with parsing, it is important to recover from type errors

• Detecting where errors occur is easier than in parsing
– There is no reason to skip over portions of code

• The Problem: 
– What type is assigned to an expression with no legitimate type?
– This type will influence the typing of the enclosing expression
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Error Recovery Attempt

• Assign type Object to ill-typed expressions

let y : Int ← x + 2  in  y + 3
• Assume x is undeclared, then its type is Object 
• But now we have Object + Int 
• This will generate another typing error
• We then say that that Object + Int = Object 
• Then the initializer’s type will not be Int
⇒ a workable solution but with cascading errors
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Better Error Recovery

• We can introduce a new type called No_type for use with ill-typed 
expressions

• Define No_type ≤ C for all types C

• Every operation is defined for No_type 
– With a No_type result

• Only one typing error for:

let y : Int ← x + 2  in  y + 3
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Notes

• A “real” compiler would use something like 
No_type

• However, there are some implementation issues
– The class hierarchy is not a tree anymore

• The Object solution is fine in the class project


