
1

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications

Type Checking II

CS143
Lecture 10

2

Lecture Outline

• Type systems and their expressiveness

• Type checking with SELF_TYPE in COOL

• Error recovery in semantic analysis

3

Expressiveness of Static Type Systems

• Static type systems detect common errors

• But some correct programs are disallowed
– Some argue for dynamic type checking instead
– Others argue for more expressive static type checking

• But more expressive type systems are more
complex

4

Dynamic and Static Types

• The dynamic type of an object is the class C that
is used in the “new C” expression that created it
– A run-time notion
– Even languages that are not statically typed have the

notion of dynamic type

• The static type of an expression captures all
dynamic types the expression could have
– A compile-time notion

5

Dynamic and Static Types. (Cont.)

• In early type systems the set of static types
correspond directly with the dynamic types

• Soundness theorem: for all expressions E
 dynamic_type(E) = static_type(E)
 (in all executions, E evaluates to values of the type

inferred by the compiler)

• This gets more complicated in advanced type
systems

6

Dynamic and Static Types in COOL

• A variable of static type A can hold values of static
type B, if B ≤ A

class A { … }
class B inherits A {…}
class Main {
 x:A ← new A;
 …
 x ← new B;
 …
}

x has static
type A

Here, x’s value has
dynamic type A

Here, x’s value has
dynamic type B

7

Dynamic and Static Types

Soundness theorem for the Cool type system:
 ∀ E. dynamic_type(E) ≤ static_type(E)

Why is this Ok?
– All operations that can be used on an object of type A

can also be used on an object of type B ≤ A
• Such as fetching the value of an attribute
• Or invoking a method on the object

– Subclasses only add attributes or methods
– Methods can be redefined but with same type!

8

An Example

class Count {
 i : int ← 0;
 inc () : Count {
 {
 i ← i + 1;
 self;
 }
 };
};

• Class Count incorporates
a counter

• The inc method works for
any subclass

• But there is problem
lurking in the type system

9

An Example (Cont.)

• Consider a subclass Stock of Count

class Stock inherits Count {
 name : String; -- name of item
};

class Main {
 Stock a ← (new Stock).inc ();
 … a.name …
};

• And the following use of Stock:

Type checking error !

10

What Went Wrong?

• (new Stock).inc() has dynamic type Stock

• So it is legitimate to write
 Stock a ← (new Stock).inc ()

• But this is not well-typed
– (new Stock).inc() has static type Count
– inc () : Count {…}

• The type checker loses type information
– This makes inheriting inc useless
– So, we must redefine inc for each of the subclasses, with a

specialized return type

11

SELF_TYPE to the Rescue

• We will extend the type system

• Insight:
– inc returns “self”
– Therefore the return value has same type as “self”
– Which could be Count or any subtype of Count!

• Introduce the keyword SELF_TYPE to use for the return
value of such functions
– We will also need to modify the typing rules to handle

SELF_TYPE

12

SELF_TYPE to the Rescue (Cont.)

• SELF_TYPE allows the return type of inc to change when
inc is inherited

• Modify the declaration of inc to read
 inc() : SELF_TYPE { … }

• The type checker can now prove:
 C,M ⊢ (new Count).inc() : Count
 C,M ⊢ (new Stock).inc() : Stock

• The program from before is now well typed

13

Notes About SELF_TYPE

• SELF_TYPE is not a dynamic type
– It is a static type
– It helps the type checker to keep better track of types

– It enables the type checker to accept more correct
programs

• In short, having SELF_TYPE increases the
expressive power of the type system

14

SELF_TYPE and Dynamic Types (Example)

• What can be the dynamic type of the object
returned by inc?
– Answer: whatever could be the type of “self”

class A inherits Count { } ;
class B inherits Count { } ;
class C inherits Count { } ;

– Answer: Count or any subtype of Count

 (inc could be invoked through any of these classes)

15

SELF_TYPE and Dynamic Types (Example)

• In general, if SELF_TYPE appears textually in the class C
as the declared type of E then
 dynamic_type(E) ≤ C

• Note: The meaning of SELF_TYPE depends on where it
appears
– We write SELF_TYPEC to refer to an occurrence of SELF_TYPE

in the body of C

• This suggests a typing rule:
 SELF_TYPEC ≤ C (*)

16

Type Checking

• Rule (*) has an important consequence:
– In type checking it is always safe to replace

SELF_TYPEC by C

• This suggests one way to handle SELF_TYPE :
– Replace all occurrences of SELF_TYPEC by C

• This would be correct but it is like not having
SELF_TYPE at all

17

Operations on SELF_TYPE

• Recall the operations on types
– T1 ≤ T2 T1 is a subtype of T2

– lub(T1,T2) the least-upper bound of T1 and T2

• We must extend these operations to handle
SELF_TYPE

18

Extending ≤

Let T1 and T2 be any types but SELF_TYPE
There are four cases in the definition of ≤

1. SELF_TYPEC ≤ SELF_TYPEC
• In Cool we never need to compare SELF_TYPEs coming from

different classes

2. SELF_TYPEC ≤ T1 if C ≤ T1
• SELF_TYPEC can be any subtype of C
• This includes C itself
• Thus this is the most flexible rule we can allow

19

Extending ≤ (Cont.)

3. T1 ≤ SELF_TYPEC always false
Note: SELF_TYPEC can denote any subtype of C.

4. T1 ≤ T2 (according to the rules from before)

Based on these rules we can extend lub …

20

Extending lub(T,T’)

Let T1 and T2 be any types but SELF_TYPE
Again there are four cases:
1. lub(SELF_TYPEC, SELF_TYPEC) = SELF_TYPEC

2. lub(SELF_TYPEC, T1) = lub(C, T1)
This is the best we can do because SELF_TYPEC ≤ C

3. lub(T1, SELF_TYPEC) = lub(C, T1)

4. lub(T1, T2) defined as before

21

Where Can SELF_TYPE Appear in COOL?

• The parser checks that SELF_TYPE appears only
where a type is expected

• But SELF_TYPE is not allowed everywhere a type can
appear:

1. class T inherits T’ {…}
• T, T’ cannot be SELF_TYPE

2. x : T
• T can be SELF_TYPE
• An attribute whose type is ≤ SELF_TYPEC

22

Where Can SELF_TYPE Appear in COOL?

3. let x : T in E
• T can be SELF_TYPE
• x has a type ≤ SELF_TYPEC

4. new T
• T can be SELF_TYPE
• Creates an object of the same type as self

5. m@T(E1,…,En)
• T cannot be SELF_TYPE

23

Where Can SELF_TYPE Not Appear in COOL?

6. m(x : T) : T’ { … }
• Only T’ can be SELF_TYPE !

What could go wrong if T were SELF_TYPE?

class A { foo(x : SELF_TYPE) : Bool {…}; };
class B inherits A {
 b : int;
 foo(x : SELF_TYPE) : Bool { … x.b …}; };
…
 let x : A ← new B in … x.foo(new A); …
…

24

Typing Rules for SELF_TYPE

• Since occurrences of SELF_TYPE depend on the
enclosing class we need to include that context
during type checking

• Recall the form of a typing judgment:
 O,M,C ⊢ e : T

 (An expression e occurring in the body of C has
static type T given a variable type environment O
and method signatures M)

25

Type Checking Rules

• The next step is to design type rules using SELF_TYPE for each
language construct

• Most of the rules remain the same except that ≤ and lub are the new
ones

• Example:

O(Id) = T0
O,M,C ⊢ e1 : T0
T1 ≤ T0

O,M,C ⊢ Id ← e1 : T1

26

What is Different?

• Recall the old rule for dispatch

O,M,C ⊢ e0 : T0
 ⠇

O,M,C ⊢ en : Tn
M(T0, f) = (T'1,…,T'n,T'n+1)
T'n+1 ≠ SELF_TYPE
Ti ≤ T'i 1 ≤ i ≤ n

O,M,C ⊢ e0.f(e1,…,en) : T'n+1

27

What is Different?

• If the return type of the method is SELF_TYPE
then the type of the dispatch is the type of the
dispatch expression:

O,M,C ⊢ e0 : T0
 ⠇

O,M,C ⊢ en : Tn
M(T0, f) = (T'1,…,T'n, SELF_TYPE)
Ti ≤ T'i 1 ≤ i ≤ n

O,M,C ⊢ e0.f(e1,…,en) : T0

28

What is Different?

• Note this rule handles the Stock example

• Formal parameters cannot be SELF_TYPE

• Actual arguments can be SELF_TYPE
– The extended ≤ relation handles this case

• The type T0 of the dispatch expression could be
SELF_TYPE
– Which class is used to find the declaration of f?
– Answer: it is safe to use the class where the dispatch appears

29

Static Dispatch

• Recall the original rule for static dispatch

O,M,C ⊢ e0 : T0
 ⠇

O,M,C ⊢ en : Tn
T0 ≤ T
M(T, f) = (T1’,…,Tn’,Tn+1’)
Tn+1’ ≠ SELF_TYPE
Ti ≤ Ti’ 1 ≤ i ≤ n

O,M,C ⊢ e0@T.f(e1,…,en) : Tn+1’

30

Static Dispatch

• If the return type of the method is SELF_TYPE
we have:

O,M,C ⊢ e0 : T0
 ⠇

O,M,C ⊢ en : Tn
T0 ≤ T
M(T, f) = (T1’,…,Tn’,SELF_TYPE)
Ti ≤ Ti’ 1 ≤ i ≤ n

O,M,C ⊢ e0@T.f(e1,…,en) : T0

31

Static Dispatch

• Why is this rule correct?

• If we dispatch a method returning SELF_TYPE in
class T, don’t we get back a T?

• No. SELF_TYPE is the type of the self parameter,
which may be a subtype of the class in which the
method appears

32

New Rules

• There are two new rules using SELF_TYPE

O,M,C ⊢ self : SELF_TYPEC

O,M,C ⊢ new SELF_TYPE : SELF_TYPEC

• There are a number of other places where
SELF_TYPE is used

33

Summary of SELF_TYPE

• The extended ≤ and lub operations can do a lot of the
work.

• SELF_TYPE can be used only in a few places. Be sure it
isn’t used anywhere else.

• A use of SELF_TYPE always refers to any subtype of the
current class
– The exception is the type checking of dispatch. The method return

type of SELF_TYPE might have nothing to do with the current
class

34

Why Cover SELF_TYPE ?

• SELF_TYPE is a research idea
– It adds more expressiveness to the type system

• SELF_TYPE is itself not so important
– except for the project

• Rather, SELF_TYPE is meant to illustrate that type
checking can be quite subtle

• In practice, there should be a balance between the
complexity of the type system and its expressiveness

35

Error Recovery

• As with parsing, it is important to recover from type errors

• Detecting where errors occur is easier than in parsing
– There is no reason to skip over portions of code

• The Problem:
– What type is assigned to an expression with no legitimate type?
– This type will influence the typing of the enclosing expression

36

Error Recovery Attempt

• Assign type Object to ill-typed expressions

let y : Int ← x + 2 in y + 3
• Assume x is undeclared, then its type is Object
• But now we have Object + Int
• This will generate another typing error
• We then say that that Object + Int = Object
• Then the initializer’s type will not be Int
⇒ a workable solution but with cascading errors

37

Better Error Recovery

• We can introduce a new type called No_type for use with ill-typed
expressions

• Define No_type ≤ C for all types C

• Every operation is defined for No_type
– With a No_type result

• Only one typing error for:

let y : Int ← x + 2 in y + 3

38

Notes

• A “real” compiler would use something like
No_type

• However, there are some implementation issues
– The class hierarchy is not a tree anymore

• The Object solution is fine in the class project

