Overview of Semantic Analysis and Type Checking I

CS143 Lecture 9

Instructor: Fredrik Kjolstad Slide design by Prof. Alex Aiken, with modifications

1

Midterm Thursday

- Material through lecture 8
- Open note, except computation
- Held in class on Thursday

Outline

- The role of semantic analysis in a compiler
 A laundry list of tasks
- Scope

- Implementation: symbol tables

Types

The Compiler So Far

- Lexical analysis
 - Detects inputs with illegal tokens
- Parsing

- Detects inputs with ill-formed parse trees

- Semantic analysis
 - Last "front end" phase
 - Catches all remaining errors

Why a Separate Semantic Analysis?

- Parsing cannot catch some errors
- Some language constructs not context-free

What Does Semantic Analysis Do?

- Checks of many kinds . . . **coolc** checks:
 - 1. All identifiers are declared
 - 2. Types
 - 3. Inheritance relationships
 - 4. Classes defined only once
 - 5. Methods in a class defined only once
 - 6. Reserved identifiers are not misused And others . . .
- The requirements depend on the language

Scope

- Matching identifier declarations with uses
 - Important static analysis step in most languages
 - Including COOL!

What's Wrong?

Example 1

Let y: String \leftarrow "abc" in y + 3

• Example 2

Let y: Int in x + 3

Note: An example property that is not context free.

Scope (Cont.)

- The scope of an identifier is the portion of a program in which that identifier is accessible
- The same identifier may refer to different things in different parts of the program
 - Different scopes for same name don't overlap
- An identifier may have restricted scope

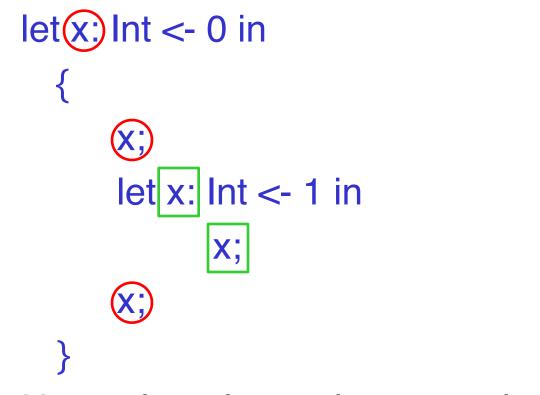
Static vs. Dynamic Scope

- Most languages have static scope
 - Scope depends only on the program text, not run-time behavior
 - Cool has static scope
- A few languages are dynamically scoped
 - Lisp, SNOBOL
 - Lisp has changed to mostly static scoping
 - Scope depends on execution of the program

Static Scoping Example

```
let x: Int <- 0 in
  {
       Х;
       let x: Int < -1 in
              Х;
       Х;
  }
```

Static Scoping Example (Cont.)



Uses of x refer to closest enclosing definition

Dynamic Scope

- A dynamically-scoped variable refers to the closest enclosing binding in the execution of the program
- Example

 g(y) = let a ← 4 in f(3);
 f(x) = a;

•

Scope in Cool

- Cool identifier bindings are introduced by
 - Class declarations (introduce class names)
 - Method definitions (introduce method names)
 - Let expressions (introduce object ids)
 - Formal parameters (introduce object ids)
 - Attribute definitions (introduce object ids)
 - Case expressions (introduce object ids)

Scope in Cool (Cont.)

- Not all kinds of identifiers follow the most-closely nested rule
- For example, class definitions in Cool
 - Cannot be nested
 - Are globally visible throughout the program
- In other words, a class name can be used before it is defined

Example: Use Before Definition

```
Class Foo {
    . . . let y: Bar in . . .
};
```

```
Class Bar {
```

```
· · · · };
```

Attribute names are global within the class in which they are defined

```
Class Foo {
    f(): Int { a };
    a: Int ← 0;
}
```

- Method/attribute names have complex rules
- A method need not be defined in the class in which it is used, but in some parent class
- Methods may also be redefined (overridden)

Implementing the Most-Closely Nested Rule

- Much of semantic analysis can be expressed as a recursive descent of an AST
 - Before: Process an AST node n
 - Recurse: Process the children of n
 - After: Finish processing the AST node n
- When performing semantic analysis on a portion of the AST, we need to know which identifiers are defined

 Example: the scope of let bindings is one subtree of the AST:

let x: Int ← 0 in e

• x is defined in subtree e

Symbol Tables

- Consider again: let x: Int ← 0 in e
- Idea:
 - Before processing e, add definition of x to current definitions, overriding any other definition of x
 - Recurse
 - After processing e, remove definition of x and restore old definition of x
- A symbol table is a data structure that tracks the current bindings of identifiers

A Simple Symbol Table Implementation

- Structure is a stack
- Operations
 - add_symbol(x) push x and associated info, such as x's type, on the stack
 - find_symbol(x) search stack, starting from top, for x.
 Return first x found or NULL if none found
 - remove_symbol() pop the stack
- Why does this work?

Limitations

- The simple symbol table works for let
 - Symbols added one at a time
 - Declarations are perfectly nested
- Where doesn't this quite fit?

A Fancier Symbol Table

- enter_scope() start a new nested scope
- find_symbol(x)
 finds current x (or null)
- add_symbol(x) add a symbol x to the table
- check_scope(x) true if x defined in current scope
- exit_scope() exit current scope

We will supply a symbol table manager for your project

Class Definitions

- Class names can be used before being defined
- We can't check class names
 - using a symbol table
 - or even in one pass
- Solution
 - Pass 1: Gather all class names
 - Pass 2: Do the checking
- Semantic analysis requires multiple passes
 - Probably more than two

Types

- What is a type?
 - The notion varies from language to language
- Consensus
 - A set of values
 - A set of operations on those values
- Classes are one instantiation of the modern notion of type

Why Do We Need Type Systems?

Consider the assembly language fragment

add \$r1, \$r2, \$r3

What are the types of \$r1, \$r2, \$r3?

Types and Operations

- Certain operations are legal for values of each type
 - It doesn't make sense to add a function pointer and an integer in C
 - It does make sense to add two integers
 - But both have the same assembly language implementation!

- A language's type system specifies which operations are valid for which types
- The goal of type checking is to ensure that operations are used with the correct types
 - Enforces intended interpretation of values, because nothing else will!

Type Checking Overview

- Three kinds of languages:
 - Statically typed: All or almost all checking of types is done as part of compilation (C, Java, Cool)
 - Dynamically typed: Almost all checking of types is done as part of program execution (Scheme)
 - Untyped: No type checking (machine code)

The Type Wars

- Competing views on static vs. dynamic typing
- Static typing proponents say:
 - Static checking catches many programming errors at compile time
 - Avoids overhead of runtime type checks
- Dynamic typing proponents say:
 - Static type systems are restrictive
 - Rapid prototyping difficult within a static type system

The Type Wars (Cont.)

- In practice
 - code written in statically typed languages usually has an escape mechanism
 - Unsafe casts in C, Java
 - Some dynamically typed languages support "pragmas" or "advice"
 - i.e., type declarations
- Why don't we have static typing everyone likes?

Types Outline

- Type concepts in COOL
- Notation for type rules

 Logical rules of inference
- COOL type rules
- General properties of type systems

Cool Types

- The types are:
 - Class Names
 - SELF_TYPE
- · The user declares types for identifiers
- The compiler infers types for expressions

 Infers a type for every expression

Type Checking and Type Inference

- Type Checking is the process of verifying fully typed programs
- Type Inference is the process of filling in missing type information
- The two are different, but the terms are often used interchangeably

Rules of Inference

- We have seen two examples of formal notation specifying parts of a compiler
 - Regular expressions
 - Context-free grammars
- The appropriate formalism for type checking is logical rules of inference

- Inference rules have the form
 If Hypothesis is true, then Conclusion is true
- Type checking computes via reasoning
 If E₁ and E₂ have certain types, then E₃ has a certain type
- Rules of inference are a compact notation for "If-Then" statements

From English to an Inference Rule

- The notation is easy to read with practice
- Start with a simplified system and gradually add features
- Building blocks
 - Symbol
 is "and"
 - Symbol \Rightarrow is "if-then"
 - x:T is "x has type T"

From English to an Inference Rule (2)

- If e_1 has type Int and e_2 has type Int, then $e_1 + e_2$ has type Int
- (e₁ has type Int \land e₂ has type Int) \Rightarrow e₁ + e₂ has type Int

 $(e_1: Int \land e_2: Int) \implies e_1 + e_2: Int$

From English to an Inference Rule (3)

The statement

 $(e_1: Int \land e_2: Int) \Rightarrow e_1 + e_2: Int$

is a special case of

 $Hypothesis_1 \land \ldots \land Hypothesis_n \Rightarrow Conclusion$

This is an inference rule.

Notation for Inference Rules

Modern inference rules are written

⊢ Hypothesis … ⊢ Hypothesis
⊢ Conclusion

- Cool type rules have hypotheses and conclusions
 ⊢ e:T
- ⊢ means "it is provable that . . ."

Two Rules

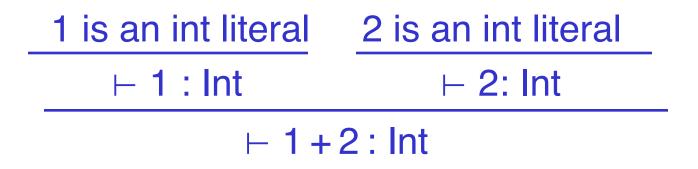


$$\begin{array}{c|c} \vdash e_1 \colon Int & \vdash e_2 \colon Int \\ \hline & \vdash e_1 + e_2 \colon Int \end{array} \qquad [Add] \end{array}$$

Two Rules (Cont.)

- These rules give templates describing how to type integers and + expressions
- By filling in the templates, we can produce complete typings for expressions

Example: 1 + 2



Soundness

- A type system is sound if
 - Whenever $\vdash e : T$
 - Then e evaluates to a value of type T
- We only want sound rules
 - But some sound rules are better than others:

i is an integer literal ⊢ i : Object

Type Checking Proofs

- Type checking proves facts e: T
 - Proof is on the structure of the AST
 - Proof has the shape of the AST
 - One type rule is used for each AST node
- In the type rule used for a node e:
 - Hypotheses are the proofs of types of e's subexpressions
 - Conclusion is the type of e
- Types are computed in a bottom-up pass over the AST

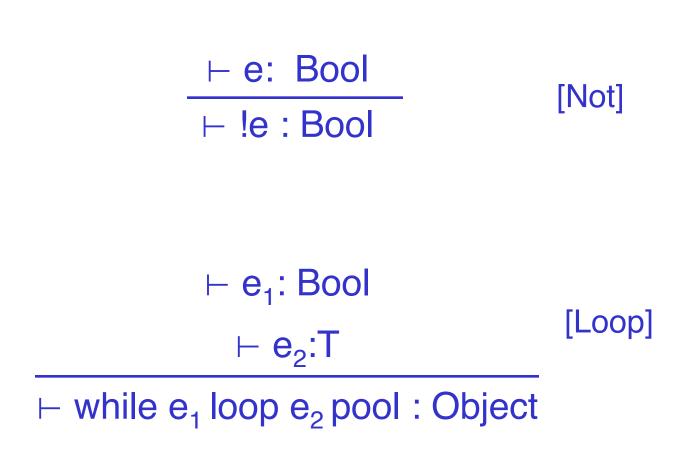
Rules for Constants

[False]

s is a string literal [String] ⊢ s: String

new T produces an object of type T _ Ignore SELF_TYPE for now . . .

Two More Rules



A Problem

• What is the type of a variable reference?

x is a variable[Var] $\vdash x : ?$

 The local, structural rule does not carry enough information to give x a type.

A Solution

- Put more information in the rules!
- A type environment gives types for free variables
 - A type environment is a function from
 ObjectIdentifiers to Types
 - A variable is free in an expression if it is not defined within the expression

Let O be a function from ObjectIdentifiers to Types

The sentence

0 ⊢ e: T

is read: Under the assumption that the free variables in e have the types given by O, it is provable that the expression e has the type T

Modified Rules

The type environment is added to the earlier rules:

i is an integer literal [Int] $O \vdash i$: Int

$$O \vdash e_1: Int \quad O \vdash e_2: Int$$
$$O \vdash e_1 + e_2: Int$$
[Add]

And we can write new rules:

$$\frac{O(x) = T}{O \vdash x: T}$$
 [Var]

$$O[T_0/x] \vdash e_1 : T_1$$

$$D \vdash let x : T_0 in e_1 : T_1$$
[Let-No-Init]

O[T/y] means O modified to return T on argument y mnemonic: "in O, T substitutes y"

Note that the let-rule enforces variable scope

- The type environment gives types to the free identifiers in the current scope
- The type environment is passed down the AST from the root towards the leaves
- Types are computed up the AST from the leaves towards the root

Now consider let with initialization:

$$O \vdash e_0 : T_0$$

$$O[T_0/x] \vdash e_1 : T_1$$

$$O \vdash \text{let } x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1$$

$$[Let-Init]$$

This rule is weak. Why?

Subtyping

- Define a relation ≤ on classes
 - $-X \leq X$
 - $X \leq Y$ if X inherits from Y
 - $X \le Z$ if $X \le Y$ and $Y \le Z$
- An improvement

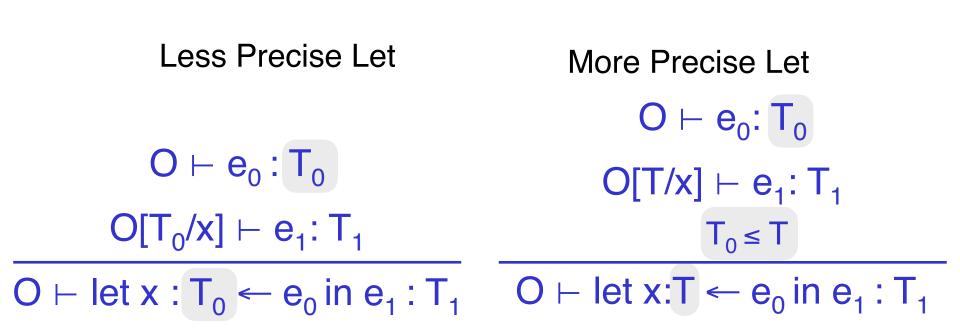
$$O \vdash e_0: T_0$$

$$O[T/x] \vdash e_1: T_1 \qquad [Let-Init]$$

$$T_0 \leq T$$

$$O \vdash \text{let } x: T \leftarrow e_0 \text{ in } e_1: T_1$$

Two Lets with Initialization



Assignment

- Both let rules are sound, but more programs typecheck with the second one
- More uses of subtyping:

$$O(x) = T_0$$

$$O \vdash e_1: T_1 \qquad [Assign]$$

$$T_1 \leq T_0$$

$$O \vdash x \leftarrow e_1: T_1$$

- Let $O_C(x) = T$ for all attributes x:T in class C
- Attribute initialization is similar to let, except for the scope of names

$$O_{C}(\mathbf{x}) = \mathsf{T}_{0}$$

$$O_{C} \vdash \mathbf{e}_{1} \colon \mathsf{T}_{1}$$

$$T_{1} \leq \mathsf{T}_{0}$$

$$O_{C} \vdash \mathbf{x} \colon \mathsf{T}_{0} \leftarrow \mathbf{e}_{1};$$
[Attr-Init]

If-Then-Else

- Consider:
 if e₀ then e₁ else e₂ fi
- The result can be either e₁ or e₂
- The type is either e_1 's type of e_2 's type
- The best we can do is the smallest supertype larger than the type of e₁ or e₂

Least Upper Bounds

lub(X,Y), the least upper bound of X and Y, is Z if
 X ≤ Z ∧ Y ≤ Z

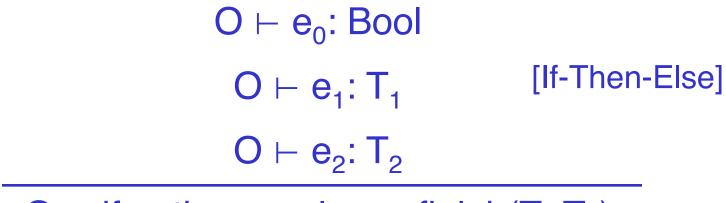
Z is an upper bound

 $- \forall Z'. X \leq Z' \land Y \leq Z' \Rightarrow Z \leq Z'$

Z is least among upper bounds

 In COOL, the least upper bound of two types is their least common ancestor in the inheritance tree

If-Then-Else Revisited



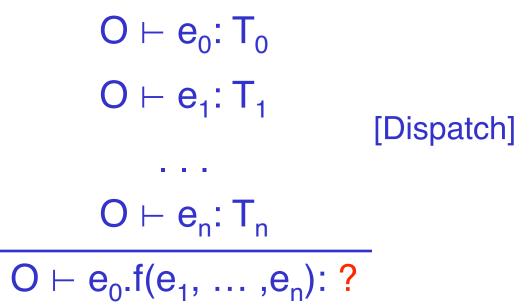
 $O \vdash if e_0 then e_1 else e_2 fi: lub(T_1, T_2)$

 The rule for case expressions takes a lub over all branches

 $O \vdash e_0: T_0$ $O[T_1/x_1] \vdash e_1: T_1,$ (Case) $O[T_n/x_n] \vdash e_n: T_n,$ $O \vdash case \ e_0 \ of \ x_1: T_1 \rightarrow e_1; \ \dots; \ x_n: T_n \rightarrow e_n; \ esac : lub(T_1, \dots, T_n)$

Method Dispatch

There is a problem with type checking method calls:



 We need information about the formal parameters and return type of f

Notes on Dispatch

- In Cool, method and object identifiers live in different name spaces
 - A method foo and an object foo can coexist in the same scope
- In the type rules, this is reflected by a separate mapping M for method signatures

 $M(C,f) = (T_1, ..., T_n, T_{n+1})$

means in class C there is a method f

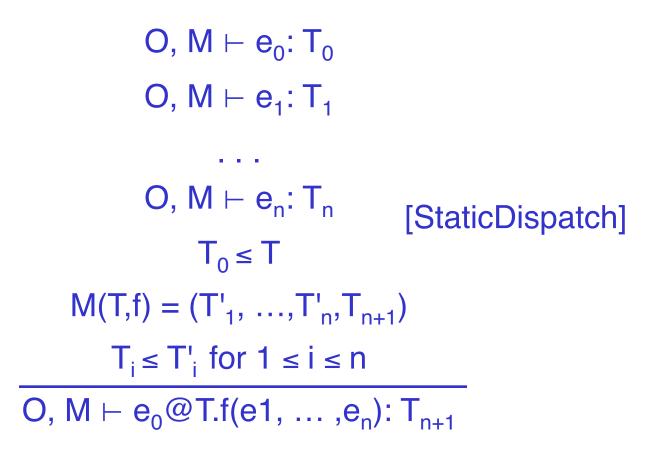
 $f(x_1:T_1,...,x_n:T_n):T_{n+1}$

The Dispatch Rule Revisited

```
O, M \vdash e_0: T_0
          O, M \vdash e_1: T_1
                   . . .
          O, M \vdash e_n: T_n
 M(T_{0},f) = (T'_{1}, ..., T'_{n}, T_{n+1})
                                                [Dispatch]
      T_i \leq T'_i for 1 \leq i \leq n
O, M \vdash e_0.f(e_1, \dots, e_n): T_{n+1}
```

- Static dispatch is a variation on normal dispatch
- The method is found in the class explicitly named by the programmer
- The inferred type of the dispatch expression must conform to the specified type

Static Dispatch (Cont.)



The Method Environment

- The method environment must be added to all rules
- In most cases, M is passed down but not actually used
 - Only the dispatch rules use M

$$O, M \vdash e_1: Int O, M \vdash e_2: Int O, M \vdash e_1 + e_2: Int O, M \vdash e_1 + e_2: Int$$

- For some cases involving SELF_TYPE, we need to know the class in which an expression appears
- The full type environment for COOL:
 - A mapping O giving types to object ids
 - A mapping M giving types to methods
 - The current class C

The form of a sentence in the logic is $O,M,C \vdash e:T$

Example:

Type Systems

- The rules in this lecture are COOL-specific
 - More info on rules for self next time
 - Other languages have very different rules
- General themes
 - Type rules are defined on the structure of expressions
 - Types of variables are modeled by an environment
- Warning: Type rules are very compact!

- COOL type checking can be implemented in a single traversal over the AST
- Type environment is passed down the tree
 From parent to child
- Types are passed up the tree
 From child to parent

$$\begin{array}{c} O,M,C \vdash e_1 : \text{ Int } O,M,C \vdash e_2 : \text{ Int} \\ \hline O,M,C \vdash e_1 + e_2 : \text{ Int} \end{array} \quad [Add] \end{array}$$

TypeCheck(Environment, $e_1 + e_2$) = { T_1 = TypeCheck(Environment, e_1); T_2 = TypeCheck(Environment, e_2); Check T_1 == T_2 == Int; return Int; }