Bottom-Up Parsing II

CS143
 Lecture 8

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications

Review: Shift-Reduce Parsing

Bottom-up parsing uses two actions:

Shift
ABCIxyz $\Rightarrow A B C x \mid y z$

Reduce

$$
\text { Cbxy I ijk } \Rightarrow \text { CbAl ijk }
$$

Recall: The Stack

- Left string can be implemented by a stack
- Top of the stack is the I
- Shift pushes a terminal on the stack
- Reduce
- pops 0 or more symbols off of the stack
- production rhs
- pushes a non-terminal on the stack
- production lhs

Key Issue

- How do we decide when to shift or reduce?
- Example grammar:

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{EIT} \\
& \mathrm{~T} \rightarrow \text { int * } \mathrm{T} \text { I int I (E) }
\end{aligned}
$$

- Consider step int I * int + int
- We could reduce by T \rightarrow int giving T I *int + int
- A fatal mistake!
- No way to reduce to the start symbol E

Definition: Handles

- Intuition: Want to reduce only if the result can still be reduced to the start symbol
- Assume a rightmost derivation

$$
S \rightarrow^{*} \alpha X \omega \rightarrow \alpha \beta \omega
$$

- Then $X \rightarrow \beta$ in the position after α is a handle of $\alpha \beta \omega$
- Can and must reduce at handles

Handles (Cont.)

- Handles formalize the intuition
- A handle is a string that can be reduced and also allows further reductions back to the start symbol (using a particular production at a specific spot)
- We only want to reduce at handles
- Note: We have said what a handle is, not how to find handles

Important Fact \#2

Important Fact \#2 about bottom-up parsing:

In shift-reduce parsing, handles appear only at the top of the stack, never inside

Why?

- Informal induction on \# of reduce moves:
- True initially, stack is empty
- Immediately after reducing a handle
- right-most non-terminal on top of the stack
- next handle must be to right of right-most non-terminal, because this is a right-most derivation
- Sequence of shift moves reaches next handle

Summary of Handles

- In shift-reduce parsing, handles always appear at the top of the stack
- Handles are never to the left of the rightmost nonterminal
- Therefore, shift-reduce moves are sufficient; the I need never move left
- Bottom-up parsing algorithms are based on recognizing handles

Recognizing Handles

- There are no known efficient algorithms to recognize handles
- Solution: use heuristics to guess which stacks are handles
- On some CFGs, the heuristics always guess correctly
- For the heuristics we use here, these are the SLR grammars
- Other heuristics work for other grammars

Grammars

Viable Prefixes

- It is not obvious how to detect handles
- At each step the parser sees only the stack, not the entire input; start with that . . .
α is a viable prefix if there is an ω such that $\alpha l \omega$ is a state of a shift-reduce parser

Huh?

- What does this mean? A few things:
- A viable prefix does not extend past the right end of the handle
- It's a viable prefix because it is a prefix of the handle
- As long as a parser has viable prefixes on the stack no parsing error has been detected

Important Fact \#3

Important Fact \#3 about bottom-up parsing:

For any SLR grammar, the set of viable prefixes is a regular language

Important Fact \#3 (Cont.)

- Important Fact \#3 is non-obvious
- We show how to compute automata that accept viable prefixes

Items

- An item is a production with a "." somewhere on the rhs, denoting a focus point
- The items for $T \rightarrow(E)$ are
$\mathrm{T} \rightarrow$.(E)
$\mathrm{T} \rightarrow$ (.E)
$\mathrm{T} \rightarrow$ (E.)
$T \rightarrow(E)$.

Items (Cont.)

- The only item for $X \rightarrow \varepsilon$ is $X \rightarrow$.
- Items are often called "LR(0) items"

Intuition

- The problem in recognizing viable prefixes is that the stack has only bits and pieces of the rhs of productions
- If it had a complete rhs, we could reduce
- These bits and pieces are always prefixes of rhs of productions

Example

Consider the input (int)

- Then (EI) is a state of a shift-reduce parse
$-(E$ is a prefix of the rhs of $T \rightarrow(E)$
- Will be reduced after the next shift
- Item $T \rightarrow$ (E .) says that so far we have seen (E of this production and hope to see)

Generalization

- The stack may have many prefixes of rhs's Prefix $_{1}$ Prefix $_{2} \ldots$ Prefix $_{n-1}$ Prefix $_{n}$
- Let Prefix ${ }_{i}$ be a prefix of rhs of $X_{i} \rightarrow \alpha_{i}$
- Prefix ${ }_{i}$ will eventually reduce to X_{i}
- The missing part of Prefix x_{i-1} of α_{i-1} starts with X_{i}
- i.e. there is a $X_{i-1} \rightarrow$ Prefix $_{i-1} X_{i} \beta$ for some β
- Recursively, Prefix ${ }_{k+1}$...Prefix ${ }_{n}$ eventually reduces to the missing part of α_{k}

An Example

Consider the string (int * int):
(int * | int) is a state of a shift-reduce parse
From top of the stack:
" ε " is a prefix of the rhs of $E \rightarrow T$
"(" is a prefix of the rhs of $T \rightarrow(E)$
" ε " is a prefix of the rhs of $E \rightarrow T$
"int *" is a prefix of the rhs of $T \rightarrow$ int * T

An Example (Cont.)

$E \rightarrow T+E I T$
T \rightarrow int * I int I (E)

The stack of items

$$
\begin{aligned}
& \mathrm{T} \rightarrow \text { int * } . \mathrm{T} \\
& \mathrm{E} \rightarrow . \mathrm{T} \\
& \mathrm{~T} \rightarrow(. \mathrm{E})
\end{aligned}
$$

Says
We've seen int * of $T \rightarrow$ int * T
We've seen $\quad \varepsilon$ of $E \rightarrow T$
We've seen $\quad($ of $T \rightarrow(E)$

Recognizing Viable Prefixes

Idea: To recognize viable prefixes, we must

- Recognize a sequence of partial rhs's of productions, where
- Each sequence can eventually reduce to part of the missing suffix of its predecessor

An NFA Recognizing Viable Prefixes

1. Add a new start production $S^{\prime} \rightarrow S$ to G
2. The NFA states are the items of G

- (Including the new start production)

3. For item $E \rightarrow \alpha \cdot X \beta$ add transition

$$
E \rightarrow \alpha . X \beta \rightarrow X E \rightarrow \alpha X . \beta
$$

4. For item $E \rightarrow \alpha \cdot X \beta$ and production $X \rightarrow \gamma$ add

$$
E \rightarrow \alpha \cdot X \beta \rightarrow \varepsilon X \rightarrow . \gamma
$$

An NFA Recognizing Viable Prefixes (Cont.)

5. Every state is an accepting state
6. Start state is $S^{\prime} \rightarrow$. S

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} I \mathrm{~T} \\
& \mathrm{~T} \rightarrow \text { int }{ }^{*} \mathrm{~T} \text { I int I (E) }
\end{aligned}
$$

NFA for Viable Prefixes

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \text { I } \mathrm{T} \\
& \mathrm{~T} \rightarrow \text { int * } \mathrm{T} \text { int I (E) }
\end{aligned}
$$

NFA for Viable Prefixes

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \text { I T } \\
& \mathrm{T} \rightarrow \text { int * } \mathrm{T} \text { I int I (E) }
\end{aligned}
$$

NFA for Viable Prefixes

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \text { I } \mathrm{T} \\
& \mathrm{~T} \rightarrow \text { int * } \mathrm{T} \text { int } \mathrm{I} \text { (E) }
\end{aligned}
$$

NFA for Viable Prefixes

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \text { I } \mathrm{T} \\
& \mathrm{~T} \rightarrow \text { int * } \mathrm{T} \text { I int } \mathrm{I} \text { (E) }
\end{aligned}
$$

NFA for Viable Prefixes

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \text { I T } \\
& \mathrm{T} \rightarrow \text { int * } \mathrm{T} \text { I int I (E) }
\end{aligned}
$$

NFA for Viable Prefixes

$\mathrm{E} \rightarrow \mathrm{T}+\mathrm{El} \mathrm{T}$
 $T \rightarrow$ int * T int $I(E)$

NFA for Viable Prefixes

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \text { I T } \\
& \mathrm{T} \rightarrow \text { int * } \mathrm{T} \text { I int I (E) }
\end{aligned}
$$

NFA for Viable Prefixes

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \text { I T } \\
& \mathrm{T} \rightarrow \text { int * } \mathrm{T} \text { I int I (E) }
\end{aligned}
$$

NFA for Viable Prefixes

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \text { I } \mathrm{T} \\
& \mathrm{~T} \rightarrow \text { int * } \mathrm{T} \text { I int } \mathrm{I} \text { (E) }
\end{aligned}
$$

NFA for Viable Prefixes

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \text { I } \mathrm{T} \\
& \mathrm{~T} \rightarrow \text { int * } \mathrm{T} \text { I int } \mathrm{I} \text { (E) }
\end{aligned}
$$

NFA for Viable Prefixes

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \text { I T } \\
& \mathrm{T} \rightarrow \text { int * } \mathrm{T} \text { I int } \mathrm{I} \text { (E) }
\end{aligned}
$$

NFA for Viable Prefixes

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} I \mathrm{~T} \\
& \mathrm{~T} \rightarrow \text { int }{ }^{*} \mathrm{~T} \text { I int I (E) }
\end{aligned}
$$

NFA for Viable Prefixes

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} I \mathrm{~T} \\
& \mathrm{~T} \rightarrow \text { int }{ }^{*} \mathrm{~T} \text { I int I (E) }
\end{aligned}
$$

NFA for Viable Prefixes

Translation to the DFA

Lingo

The states of the DFA are "canonical collections of items"

Or

"canonical collections of $\operatorname{LR}(0)$ items"

The Dragon book gives another way of constructing LR(0) items

Valid Items

Item $X \rightarrow \beta . \gamma$ is valid for a viable prefix $\alpha \beta$ if

$$
S^{\prime} \rightarrow^{*} \alpha X \omega \rightarrow \alpha \beta \gamma \omega
$$

by a right-most derivation

After parsing $\alpha \beta$, the valid items are the possible tops of the stack of items

Items Valid for a Prefix

An item I is valid for a viable prefix α if the DFA recognizing viable prefixes terminates on input α in a state s containing I

The items in s describe what the top of the item stack might be after reading input α

Valid Items Example

- An item is often valid for many prefixes
- Example: The item $\mathrm{T} \rightarrow$ (.E) is valid for prefixes

$$
\begin{gathered}
\text { (} \\
\text { ((} \\
\text { ((() } \\
\text { ((() }
\end{gathered}
$$

Translation to the DFA

LR(0) Parsing

- Idea: Assume
- stack contains α
- next input is t
- DFA on input α terminates in state s
- Reduce by $X \rightarrow \beta$ if
$-s$ contains item $X \rightarrow \beta$.
- Shift if
$-s$ contains item $X \rightarrow \beta . t \omega$
- equivalent to saying s has a transition labeled t

LR(0) Conflicts

- $L R(0)$ has a reduce/reduce conflict if:
- Any state has two reduce items:
$-X \rightarrow \beta$. and $Y \rightarrow \omega$.
- LR(0) has a shift/reduce conflict if:
- Any state has a reduce item and a shift item:
$-X \rightarrow \beta$. and $Y \rightarrow \omega . t \delta$

SLR

- LR = "Left-to-right scan"
- SLR = "Simple LR"
- SLR improves on LR(0) shift/reduce heuristics
- Fewer states have conflicts

SLR Parsing

- Idea: Assume
- stack contains α
- next input is t
- DFA on input α terminates in state s
- Reduce by $X \rightarrow \beta$ if
$-s$ contains item $X \rightarrow \beta$.
$-\mathrm{t} \in$ Follow(X)
- Shift if
$-s$ contains item $X \rightarrow \beta . t \omega$

SLR Parsing (Cont.)

- If there are conflicts under these rules, the grammar is not SLR
- The rules amount to a heuristic for detecting handles
- The SLR grammars are those where the heuristics detect exactly the handles

Precedence Declarations Digression

- Lots of grammars aren't SLR
- including all ambiguous grammars
- We can parse more grammars by using precedence declarations
- Instructions for resolving conflicts

Precedence Declarations (Cont.)

- Consider our favorite ambiguous grammar: $-E \rightarrow E+E I E$ * I (E) I int
- The DFA for this grammar contains a state with the following items:
$-E \rightarrow E * E . \quad E \rightarrow E .+E$
- shift/reduce conflict!
- Declaring "* has higher precedence than +" resolves this conflict in favor of reducing

Precedence Declarations (Cont.)

- The term "precedence declaration" is misleading
- These declarations do not define precedence; they define conflict resolutions
- Not quite the same thing!

Naïve SLR Parsing Algorithm

1. Let M be DFA for viable prefixes of G
2. Let $\mid x_{1} \ldots x_{n} \$$ be initial configuration
3. Repeat until configuration is SI\$

- Let $\alpha \mid \omega$ be current configuration
- Run M on current stack α
- If M rejects α, report parsing error
- Stack α is not a viable prefix
- If M accepts α with items I, let t be next input
- Reduce if $X \rightarrow \beta$. $\in I$ and $t \in \operatorname{Follow}(X)$
- Otherwise, shift if $X \rightarrow \beta . t \gamma \in I$
- Report parsing error if neither applies

Notes

- If there is a conflict in the last step, grammar is not SLR(k)
- k is the amount of lookahead
- In practice $\mathrm{k}=1$
- Will skip using extra start state S^{\prime} in following example to save space on slides

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} I \mathrm{~T} \\
& \mathrm{~T} \rightarrow \text { int * } \mathrm{T} \text { I int I (E) }
\end{aligned}
$$

SLR Example

Configuration DFA Halt State Action
 I int * int\$
 1
 shift

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} I \mathrm{~T} \\
& \mathrm{~T} \rightarrow \text { int * } \mathrm{T} \text { I int I (E) }
\end{aligned}
$$

SLR Example

Configuration DFA Halt State Action
 I int * int\$
 1
 shift
 int I * int\$
 3 * not in Follow(T) shift

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} I \mathrm{~T} \\
& \mathrm{~T} \rightarrow \text { int * } \mathrm{T} \text { I int I (E) }
\end{aligned}
$$

SLR Example

Configuration DFA Halt State Action
I int * int\$
1
shift
int I * int\$
int * I int\$
3 * not in Follow(T) shift
11
shift

$$
\begin{aligned}
& E \rightarrow T+E I T \\
& T \rightarrow \text { int * TI int I (E) }
\end{aligned}
$$

SLR Example

Configuration DFA Halt State Action
I int * int\$
1
shift
int I * int\$
int * I int\$
3 * not in Follow(T) shift
11 shift
int * int I\$ $3 \$ \in \operatorname{Follow}(T) \quad$ reduce $T \rightarrow$ int

$$
\begin{aligned}
& E \rightarrow T+E I T \\
& T \rightarrow \text { int * TI int I (E) }
\end{aligned}
$$

SLR Example

Configuration DFA Halt State Action
I int * int\$1shiftint I * int\$int * I int\$3 * not in Follow(T) shift11shift
int * int I\$ 3 \$ $\in \operatorname{Follow}(T) \quad$ reduce $T \rightarrow$ intint *TIS $4 \$ \in \operatorname{Follow}(T) \quad$ reduce $T \rightarrow$ int*T

$$
\begin{aligned}
& E \rightarrow T+E I T \\
& T \rightarrow \text { int * TI int I (E) }
\end{aligned}
$$

SLR Example

Configuration	DFA Halt State	Action
I int * int\$	1	shift
int I * int\$	3 * not in Follow(T)	shift
int * I int\$	11	shift
int * int I\$	3 \$ Follow(T)	reduce $\mathrm{T} \rightarrow$ int
int * T I\$	$4 \$ \in \operatorname{Follow}(\mathrm{~T})$	reduce $\mathrm{T} \rightarrow$ int*${ }^{\text {T }}$
T I\$	$5 \$ \in \operatorname{Follow}(\mathrm{~T})$	reduce $\mathrm{E} \rightarrow \mathrm{T}$

$$
\begin{aligned}
& E \rightarrow T+E I T \\
& T \rightarrow \text { int * TI int I (E) }
\end{aligned}
$$

SLR Example

Configuration	DFA Halt State	Action I int * int\$
shift		

An Improvement

- Rerunning the automaton at each step is wasteful
- Most of the work is repeated
- Remember the state of the automaton on each prefix of the stack
- Change stack to contain pairs

$$
\langle\text { symbol, DFA state }\rangle
$$

An Improvement (Cont.)

- For a stack
$\left\langle\right.$ symbol $_{1}$, state $\left._{1}\right\rangle \ldots\left\langle\right.$ symbol $_{n}$, state $\left._{n}\right\rangle$ state $_{n}$ is the final state of the DFA on symbol $_{1} \ldots$ symbol $_{n}$
- Detail: The bottom of the stack is 〈dummy,start〉 where
- dummy is a dummy symbol
- start is the start state of the DFA

Goto (DFA) Table

- Define goto $[i, A]=j$ if state $_{i} \rightarrow$ A state $_{j}$
- goto is just the transition function of the DFA
- One of two parsing tables

Refined Parser Moves

- Shift X
- Push $\langle\mathrm{a}, \mathrm{x}\rangle$ on the stack
- a is current input
$-x$ is a DFA state
- Reduce $X \rightarrow \alpha$
- As before
- Accept
- Error

Action Table

For each state s_{i} and terminal t

- If s_{i} has item $X \rightarrow \alpha . t \beta$ and goto $[i, t]=k$ then action $[i, t]=$ shift k
- If s_{i} has item $X \rightarrow \alpha$. and $t \in \operatorname{Follow}(X)$ and $X \neq S$ ' then action $[i, t]=$ reduce $X \rightarrow \alpha$
- If s_{i} has item $\mathrm{S}^{\prime} \rightarrow \mathrm{S}$. then action $[\mathrm{i}, \$]=$ accept
- Otherwise, action $[i, t]=$ error

SLR Parsing Algorithm

Let input = w $\$$ be initial input
Let $\mathrm{j}=0$
Let DFA state 1 be the one with item $S^{\prime} \rightarrow$.S
Let stack $=\langle$ dummy, 1$\rangle / /\langle$ symbol state \rangle
repeat
case action[top_state(stack), input[j]] of
shift k: push \langle input[j++], k \rangle
reduce $X \rightarrow \alpha$:
pop lal pairs,
push $\langle\mathrm{X}$, goto[top_state(stack), X] \rangle
accept: halt normally
error: halt and report error

Notes on SLR Parsing Algorithm

- Note that the algorithm uses only the DFA states and the input
- The stack symbols are never used!
- However, we still need the symbols for semantic actions

More Notes

- Some common constructs are not SLR(1)
- $L R(1)$ is more powerful
- Build lookahead into the items
- An $L R(1)$ item is a pair: (LR(0) item, x lookahead)
$-[T \rightarrow$. int * $T, \$]$ means
- After seeing $\mathrm{T} \rightarrow$ int * T reduce if lookahead is $\$$
- More accurate than just using follow sets
- See Dragon Book
- Take a look at the LR(1) automaton for your parser!

