
1

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications

CS143
Lecture 5

Introduction to Parsing

2

Outline

• Limitations of regular languages

• Parser overview

• Context-free grammars (CFG’s)

• Derivations

• Ambiguity

3

Languages and Automata

• Formal languages are very important in CS
– Especially in programming languages

• Regular languages
– The weakest formal languages widely used
– Many applications

• We will today study context-free languages

4

Beyond Regular Languages

• Many languages are not regular

• Strings of balanced parentheses are not regular:

{ }() | 0i i i ≥

5

What Can Regular Languages Express?

• Languages requiring counting modulo a fixed
integer

• Intuition: A finite automaton that runs long enough
must repeat states

• Finite automaton can’t remember # of times it has
visited a particular state

6

The Functionality of the Parser

• Input: sequence of tokens from lexer

• Output: parse tree of the program
(Conceptually, but in practice parsers return an AST)

7

Example

• Cool
if x = y then 1 else 2 fi

• Parser input
IF ID = ID THEN INT ELSE INT FI

• Parser output
IF-THEN-ELSE

=

ID ID

INTINT

8

Comparison with Lexical Analysis

Lexer Parser
String of characters String of tokens Parse tree

9

The Role of the Parser

• Not all strings of tokens are programs . . .
• . . . parser must distinguish between valid and

invalid strings of tokens

• We need
– A language for describing valid strings of tokens
– A method for distinguishing valid from invalid strings of

tokens

10

Context-Free Grammars

• Programming language constructs have recursive
structure

• An EXPR is
if EXPR then EXPR else EXPR fi
while EXPR loop EXPR pool
…

• Context-free grammars are a natural notation for
this recursive structure

11

CFGs (Cont.)

• A CFG consists of
– A set of terminals T
– A set of non-terminals N
– A start symbol S (a non-terminal)
– A set of productions

X → Y1Y2 … Yn

where X ∊ N and Yi ∊T ∪ N ∪ {ε}

12

Notational Conventions

• In these lecture notes
– Non-terminals are written upper-case
– Terminals are written lower-case
– The start symbol is the left-hand side of the first

production

13

Examples of CFGs

A fragment of Cool:

EXPR if EXPR then EXPR else EXPR fi
| while EXPR loop EXPR pool
| id

→

14

Examples of CFGs (cont.)

Simple arithmetic expressions:

()

E E E
| E + E
| E
| id

→ ∗

(Running example this week and next)

15

The Language of a CFG

Read productions as rules:

X → Y1 … Yn

means X can be replaced by Y1 … Yn

16

Key Idea

1. Begin with a string consisting of the start symbol
“S”

2. Replace any non-terminal X in the string by a
the right-hand side of some production

X → Y1 … Yn

3. Repeat (2) until there are no non-terminals in
the string

17

The Language of a CFG (Cont.)

More formally, write

X1 … Xi-1 Xi Xi+1 ... Xn → X1 … Xi-1 Y1 ... Ym Xi+1 ... Xn

if there is a production

Xi → Y1 … Ym

18

The Language of a CFG (Cont.)

Write

X1 … Xn →* Y1 ... Ym

if

X1 … Xn → … → … → Y1 ... Ym

in 0 or more steps

19

The Language of a CFG

Let G be a context-free grammar with start symbol
S. Then the language of G is:

{a1…an | S →* a1…an and every ai is a terminal }

20

Terminals

• Terminals are so-called because there are no
rules for replacing them

• Once generated, terminals are permanent

• Terminals ought to be tokens of the language

21

Examples

L(G) is the language of CFG G

Strings of balanced parentheses

Two grammars:

()S S
S ε

→

→

()
|

S S
ε

→

{ }() | 0i i i ≥

OR

22

Cool Example

A fragment of Cool:

EXPR if EXPR then EXPR else EXPR fi
| while EXPR loop EXPR pool
| id

→

23

Cool Example (Cont.)

Some elements of the Cool CFG

id
if id then id else id fi
while id loop id pool
if while id loop id pool then id else id fi
if if id then id else id fi then id else id fi

24

Arithmetic Example

Simple arithmetic expressions:

Some elements of the language:

E E+E | E E | (E) | id→ ∗

id id + id
(id) id id
(id) id id (id)

∗

∗ ∗

25

Notes

The idea of a CFG is a big step. But:

• Membership in a language is “yes” or “no”
– We also need a parse tree of the input

• Must handle errors gracefully

• Need an implementation of CFG’s (e.g., bison)

26

More Notes

• Form of the grammar is important
– Many grammars generate the same language
– Tools are sensitive to the grammar

– Note: Tools for regular languages (e.g., flex) are
sensitive to the form of the regular expression, but this
is rarely a problem in practice

27

Derivations and Parse Trees

A derivation is a sequence of productions leading
to a string of only terminals

S → … → d …

A derivation can be drawn as a tree
– Start symbol is the tree’s root
– For a production X → Y1 … Yn add children Y1 … Yn to

node X

28

Derivation Example

• Grammar

• String

E E+E | E E | (E) | id→ ∗

id id + id∗

29

Derivation Example (cont.)

E
E+E
E E+E
id E + E
id id + E
id id + id

→

→ ∗

→ ∗

→ ∗

→ ∗

E

E

E E

E+

id*

idid

30

Derivation in Detail (1)

E

E

31

Derivation in Detail (2)

E
E+E→

E

E E+

32

Derivation in Detail (3)

E E

E
E+E
E +→ ∗

→

E

E

E E

E+

*

33

Derivation in Detail (4)

E
E+E
E E+E
id E + E→ ∗

→

→ ∗

E

E

E E

E+

*

id

34

Derivation in Detail (5)

E
E+E
E E+E
id E +
id id +

E
E→ ∗

→

→ ∗

→ ∗

E

E

E E

E+

*

idid

35

Derivation in Detail (6)

E
E+E
E E+E
id E + E
id id + E
id id + id

→

→ ∗

→ ∗

→

→ ∗

∗

E

E

E E

E+

id*

idid

36

Notes on Derivations

• A parse tree has
– Terminals at the leaves
– Non-terminals at the interior nodes

• An in-order traversal of the leaves is the original
input

• The parse tree shows the association of
operations, the input string does not

37

Left-most and Right-most Derivations

• The example is a left-most
derivation
– At each step, replace the

left-most non-terminal

• There is an equivalent
notion of a right-most
derivation

E
E+E
E+id
E E + id
E id + id
id id + id

→

→

→ ∗

→ ∗

→ ∗

38

Right-most Derivation in Detail (1)

E

E

39

Right-most Derivation in Detail (2)

E
E+E→

E

E E+

40

Right-most Derivation in Detail (3)

id

E
E+E
E+→

→

E

E E+

id

41

Right-most Derivation in Detail (4)

E
E+E
E+id
E E + id

→

∗

→

→

E

E

E E

E+

id*

42

Right-most Derivation in Detail (5)

E
E+E
E+id
E E
E

+ id
id + id

→

→

→

∗

∗

→

E

E

E E

E+

id*

id

43

Right-most Derivation in Detail (6)

E
E+E
E+id
E E + id
E id + id
id id + id→ ∗

→

→

→ ∗

→ ∗

E

E

E E

E+

id*

idid

44

Derivations and Parse Trees

• Note that right-most and left-most derivations
have the same parse tree

• The difference is the order in which branches are
added

45

Summary of Derivations

• We are not just interested in whether s ∈ L(G)
– We need a parse tree for s

• A derivation defines a parse tree
– But one parse tree may have many derivations

• Left-most and right-most derivations are important
in parser implementation

46

Ambiguity

• Grammar

• String

E E+E | E E | (E) | id→ ∗

id id + id∗

47

Ambiguity (Cont.)

This string has two parse trees

E

E

E E

E*

id +

idid

E

E

E E

E+

id*

idid

48

Ambiguity (Cont.)

• A grammar is ambiguous if it has more than one
parse tree for some string
– Equivalently, there is more than one right-most or left-

most derivation for some string

• Ambiguity is BAD
– Leaves meaning of some programs ill-defined

49

Dealing with Ambiguity

• There are several ways to handle ambiguity

• Most direct method is to rewrite grammar
unambiguously

• Enforces precedence of * over +

' '

'

E E E | E
E id E | id | (E) E | (E)

→ +

ʹ ʹ→ ∗ ∗

E E+E | E E | (E) | id→ ∗

50

Ambiguity in Arithmetic Expressions

• Recall the grammar
 E → E + E | E * E | (E) | int
• The string int * int + int has two parse trees:

E

E

E E

E*

int +

intint

E

E

E E

E+

int*

intint

51

Ambiguity: The Dangling Else

• Consider the grammar
 E → if E then E
 | if E then E else E
 | OTHER

• This grammar is also ambiguous

52

The Dangling Else: Example

• The expression
 if E1 then if E2 then E3 else E4
has two parse trees

if

E1 if

E2 E3 E4

if

E1 if

E2 E3

E4

• Typically we want the second form

53

The Dangling Else: A Fix

• else matches the closest unmatched then
• We can describe this in the grammar

 E → MIF /* all then are matched */
 | UIF /* some then is unmatched */

E → if E then E
 | if E then E else E
 | OTHER

Key: Disallow if-then inside
 then-clauseUIF → if E then E

 | if E then MIF else UIF

MIF → if E then MIF else MIF
 | OTHER

54

The Dangling Else: Example Revisited

• The expression if E1 then if E2 then E3 else E4

if

E1 if

E2 E3 E4

if

E1 if

E2 E3

E4

• Not valid because the then
expression is not a MIF

• A valid parse tree (for
a UIF)

UIF → if E then E
 | if E then MIF else UIF

55

Ambiguity

• No general techniques for handling ambiguity

• Impossible to convert automatically an ambiguous
grammar to an unambiguous one

• Used with care, ambiguity can simplify the grammar
– Sometimes allows more natural definitions
– We need disambiguation mechanisms

56

Precedence and Associativity Declarations

• Instead of rewriting the grammar
– Use the more natural (ambiguous) grammar
– Along with disambiguating declarations

• Most tools allow precedence and associativity
declarations to disambiguate grammars

• Examples …

57

Associativity Declarations

• Consider the grammar E → E + E | int
• Ambiguous: two parse trees of int + int + int

E

E

E E

E+

int +

intint

E

E

E E

E+

int+

intint

• Left associativity declaration: %left +

58

Precedence Declarations

• Consider the grammar E → E + E | E * E | int
– And the string int + int * int

E

E

E E

E+

int *

intint

E

E

E E

E*

int+

intint
• Precedence declarations: %left +
 %left *

