
Language Design and Overview of COOL

CS143
Lecture 2

1

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications

2

Grade Weights

• Project 50%
– 1–2 10% each
– 3–4 15% each

• Midterm 15%

• Final 25%

• Written Assignments 10%
– 2.5% each

3

Lecture Outline

• Today’s topic: language design
– Why are there new languages?
– Good-language criteria

• History of ideas:
– Abstraction
– Types
– Reuse

• Cool
– The Course Project

4

Programming Language Economics 101

• Languages are adopted to fill a void
– Enable a previously difficult/impossible application
– Orthogonal to language design quality (almost)

• Programmer training is the dominant cost
– And rewriting code
– Languages with many users are replaced rarely
– Popular languages become ossified
– But easy to start in a new niche . . .

5

Why So Many Languages?

• Application domains have distinctive and
conflicting needs

• Examples: (language–need pairs)

6

Topic: Language Design

• No universally accepted metrics for design

• Claim: “A good language is one people use”

7

Language Evaluation Criteria

Features Criteria

Readability Writeability Reliability
Data types

Abstraction

Type checking

Exception handling

8

History of Ideas: Abstraction

• Abstraction = detached from concrete details
– “Abstraction is selective ignorance” - Andrew Koenig

• Modes of abstraction
– Via languages/compilers: High-level code, few machine dependencies
– Via functions and subroutines: Abstract interface to behavior
– Via modules: Export interfaces; hide implementation
– Via classes/abstract data types: Bundle data with its operations

• Abstraction is necessary to build any complex system
– The key is information hiding—expose only the essential

9

History of Ideas: Types

• Originally, few types
– FORTRAN: scalars, arrays
– LISP: no static type distinctions

• Realization: Types help
– Lets you to express abstraction
– Lets the compiler report many frequent errors
– Sometimes to the point that programs are guaranteed “safe”
– Helps the compiler optimize your code

• More recently
– Lots of interest in types
– Experiments with various forms of parameterization
– Best developed in functional programming

10

History of Ideas: Reuse

• Reuse = exploit common patterns in software systems
– Goal: mass-produced software components
– Reuse is difficult

• Two popular approaches
– Type parameterization (List(int), List(double))
– Classes and inheritance: C++ derived classes
– C++ and Java have both

• Inheritance allows
– Specialization of existing abstraction
– Extension, modification, and hidden behavior

11

Trends

• Language design
– Many new special-purpose languages
– Popular languages stick around (perhaps forever)

• Fortran and Cobol

• Compilers
– Ever more needed and ever more complex
– Driven by increasing gap between

• new languages
• new architectures

– Venerable and healthy area

12

Why Study Languages and Compilers ?

5. Increase capacity of expression

4. Improve understanding of program behavior

3. Increase ability to learn new languages

2. Learn to build a large and reliable system

1. See many basic CS concepts at work

13

Cool Overview

• Classroom Object Oriented Language

• Designed to
– Be implementable in a short time
– Give a taste of implementation of modern

• Abstraction
• Static typing
• Reuse (inheritance)
• Memory management
• And more …

• But many things are left out

14

A Simple Example

• Cool programs are sets of class definitions
– A special class Main with a special method main
– All Cool code lives inside classes

• A class is a collection of attributes and methods
• Instances of a class are objects

class Point {
 x : Int ← 0;
 y : Int ← 0;
};

15

Cool Objects

• An object can be thought of as a record with a
slot for each attribute

class Point {
 x : Int ← 0;
 y : Int; (* use default value *)
};

x y
0 0

• The expression “new Point” creates a new
object of class Point

16

Methods

• Methods can refer to the current object using self

class Point {
 x : Int ← 0;
 y : Int ← 0;
 movePoint(newx : Int, newy : Int): Point {
 {
 x ← newx;
 y ← newy;
 self;
 } -- close block expression
 }; -- close method
}; -- close class

• A class can also define methods for manipulating the
attributes

17

Information Hiding in Cool

• Methods are global
• Attributes are local to a class

– They can only be accessed by the class’s methods

class Point {
 ...
 x () : Int { x };
 setx (newx : Int) : Int { x ← newx };
};

18

Methods

• Each object knows how to access the code of a method
• As if the object contains a slot pointing to the code

• In reality implementations save space by sharing
these pointers among instances of the same class

x y
0 0

movePoint

*

x y
0 0

methods

movePoint

*

*

19

Inheritance

• We can extend points to colored points using subclassing
=> class hierarchy

class ColorPoint inherits Point {
 color : Int ← 0;
 movePoint(newx : Int, newy : Int): Point {{
 color ← 0;
 x ← newx;
 y ← newy;
 self;
 }};
}; x y

0 0
color

0*
movePoint

20

Cool Types

• Every class is a type

• Base classes:
– Int for integers
– Bool for boolean values: true, false
– String for strings
– Object root of the class hierarchy

• All variables must be declared
– compiler infers types for expressions

21

Cool Type Checking

• Is well typed if A is an ancestor of B in the class
hierarchy
– Anywhere an A is expected a B can be used

• Type safety:
– A well-typed program cannot result in runtime type

errors

x : A;
x ← new B;

22

Method Invocation and Inheritance

• Methods are invoked by dispatch

• Understanding dispatch in the presence of inheritance is a
subtle aspect of OO languages

p : Point;
p ← new ColorPoint;
p.movePoint(1,2);

p has static type Point

p has dynamic type ColorPoint

p.movePoint must invoke
the ColorPoint version

23

Method Invocation

• Example: invoke one-argument method m(x)
e.m(e’)

…
1

…
4

m: self ←
x ←
<method code>

3

5

5

6

1. Eval. e
2. Find class of e
3. Find code of m
4. Eval. argum.
5. Bind self and x
6. Run method

…

…

2

method
table

24

Other Expressions

• Expression language
– every expression has a type and a value
– Loops while E loop E pool
– Conditionals if E then E else E fi
– Case statement case E of x : Type ⇒ E; … esac
– Arithmetic +, -, …
– Logical operations <, =, …
– Assignment x ← E
– Primitive I/O out_string(s), in_string(), …

• Missing features:
– arrays, floating point operations, exceptions, …

25

Cool Memory Management

• Memory is allocated every time new is invoked

• Memory is deallocated automatically when an
object is no longer reachable

• Done by the garbage collector (GC)
– There is a Cool GC

26

Course Project

• A complete compiler
– Cool ==> MIPS assembly language
– No optimizations

• Split in 4 programming assignments (PAs)

• There is adequate time to complete assignments
– But start early and please follow directions

• Individual or team
– max. 2 students

