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Status

• We have covered the front-end phases
– Lexical analysis
– Parsing
– Semantic analysis

• Next are the back-end phases
– Optimization
– Code generation

• We’ll do code generation first . . .
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Run-time environments

• Before discussing code generation, we need to 
understand what we are trying to generate

• There are a number of standard techniques for 
structuring executable code that are widely used
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Outline

• Management of run-time resources

• Correspondence between 
– static (compile-time) and 
– dynamic (run-time) structures

• Storage organization
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Run-time Resources

• Execution of a program is initially under the 
control of the operating system

• When a program is invoked:
– The OS allocates space for the program
– The code is loaded into part of the space
– The OS jumps to the entry point (i.e., “main”)
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Memory Layout

Low Address

High Address

Memory

Code

Other Space
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Notes

• By tradition, pictures of machine organization 
have:
– Low address at the top
– High address at the bottom
– Lines delimiting areas for different kinds of data

• These pictures are simplifications
– E.g., not all memory need be contiguous
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What is Other Space?

• Holds all data for the program
• Other Space = Data Space

• Compiler is responsible for:
– Generating code
– Orchestrating use of the data area
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Code Generation Goals

• Two goals:
– Correctness
– Speed

• Most complications in code generation come from 
trying to be fast as well as correct
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Assumptions about Execution

1. Execution is sequential; control moves from one 
point in a program to another in a well-defined 
order

2. When a procedure is called, control eventually 
returns to the point immediately after the call

Do these assumptions always hold?
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Activations

• An invocation of procedure P is an activation of P

• The lifetime of an activation of P is
– All the steps to execute P
– Including all the steps in procedures P calls
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Lifetimes of Variables

• The lifetime of a variable x is the portion of 
execution in which x is defined

• Note that
– Lifetime is a dynamic (run-time) concept
– Scope is a static concept
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Activation Trees

• Assumption (2) requires that when P calls Q, then 
Q returns before P does

• Lifetimes of procedure activations are properly 
nested

• Activation lifetimes can be depicted as a tree



14

Example

Class Main {
g() : Int { 1 };
f():  Int { g() };
main(): Int {{ g(); f(); }};

}
Main

fg

g
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Example 2

Class Main {
g() : Int { 1 };
f(x:Int):  Int { if x = 0 then g() else f(x - 1) fi};
main(): Int {{f(3); }};

}

What is the activation tree for this example?
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Notes

• The activation tree depends on run-time behavior

• The activation tree may be different for every 
program input

• Since activations are properly nested, a stack can 
track currently active procedures
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Example

Class Main {
g() : Int { 1 };
f():  Int { g() };
main(): Int {{ g(); f(); }};

}
Main Stack

Main
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Example

Class Main {
g() : Int { 1 };
f():  Int { g() };
main(): Int {{ g(); f(); }};

}
Main

g

Stack

Main

g
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Example

Class Main {
g() : Int { 1 };
f():  Int { g() };
main(): Int {{ g(); f(); }};

}
Main

g f

Stack

Main

f
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Example

Class Main {
g() : Int { 1 };
f():  Int { g() };
main(): Int {{ g(); f(); }};

}
Main

fg

g

Stack

Main

f

g
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Revised Memory Layout

Low Address

High Address

Memory

Code

Stack
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Activation Records

• The information needed to manage one 
procedure activation is called an activation record 
(AR) or frame

• If procedure F calls G, then G’s activation record 
contains a mix of info about F and G.
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What is in G’s AR when F calls G?

• F is “suspended” until G completes, at which point 
F resumes.  G’s AR contains information needed 
to resume execution of F.

• G’s AR may also contain:
– G’s return value (needed by F)
– Actual parameters to G (supplied by F)
– Space for G’s local variables
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The Contents of a Typical AR for G

• Space for G’s return value
• Actual parameters
• Pointer to the previous activation record

– The control link; points to AR of caller of G
•  Machine status prior to calling G

– Contents of registers & program  counter
– Local variables

• Other temporary values
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Example 2, Revisited

Class Main {
g() : Int { 1 };
f(x:Int):Int {if x=0 then g() else f(x - 1)(**)fi};
main(): Int {{f(3); (*)

 }};}

AR for f:
result

argument

control link

return address
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Stack After Two Calls to f

Main

(**)

2
(result)f
(*)

3
(result)f
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Notes

• Main has no argument or local variables and its 
result is never used; its AR is uninteresting

• (*) and (**) are return addresses of the 
invocations of f
– The return address is where execution resumes after a 

procedure call finishes

• This is only one of many possible AR designs
– Would also work for C, Pascal, FORTRAN, etc.
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The Main Point

The compiler must determine, at compile-time, the 
layout of activation records and generate code 

that correctly accesses locations in the activation 
record

Thus, the AR layout and the code generator must 
be designed together!
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Example

The picture shows the state after the call to the 2nd 
invocation of f returns

Main

(**)

2
1f
(*)

3
(result)f
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Discussion

• The advantage of placing the return value 1st in a 
frame is that the caller can find it at a fixed offset 
from its own frame

• There is nothing magic about this organization
– Can rearrange order of frame elements
– Can divide caller/callee responsibilities differently
– An organization is better if it improves execution speed 

or simplifies code generation
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Discussion (Cont.)

• Real compilers hold as much of the frame as 
possible in registers
– Especially the method result and arguments
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Globals

• All references to a global variable point to the 
same object
– Can’t store a global in an activation record

• Globals are assigned a fixed address once
– Variables with fixed address are “statically allocated”

• Depending on the language, there may be other 
statically allocated values
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Memory Layout with Static Data

Low Address

High Address

Memory

Code

Stack

Static Data
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Heap Storage

• A value that outlives the procedure that creates it 
cannot be kept in the AR

method foo() { new Bar }
The Bar value must survive deallocation of foo’s AR

• Languages with dynamically allocated data use a 
heap to store dynamic data
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Notes

• The code area contains object code
– For most languages, fixed size and read only

• The static area contains data (not code) with fixed 
addresses (e.g., global data)
– Fixed size, may be readable or writable

• The stack contains an AR for each currently 
active procedure
– Each AR usually fixed size, contains locals

• Heap contains all other data
– In C, heap is managed by malloc and free
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Notes (Cont.)

• Both the heap and the stack grow

• Must take care that they don’t grow into each 
other

• Solution: start heap and stack at opposite ends of 
memory and let them grow towards each other
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Memory Layout with Heap

Low Address

High Address

Memory

Code

Stack

Static Data

Heap
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Data Layout

• Low-level details of machine architecture are 
important in laying out data for correct code and 
maximum performance

• Chief among these concerns is alignment
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Alignment

• Most machines are 32 or 64 bit
– 8 bits in a byte
– 4 bytes in a word
– Machines are either byte or word addressable

• Data is word aligned if it begins at a word 
boundary

• Most machines have some alignment restrictions
– Or performance penalties for poor alignment
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Alignment (Cont.)

• Example: A string
“Hello” 

Takes 5 characters (without a terminating \0)

• To word align next datum, add 3 “padding” 
characters to the string

• The padding is not part of the string, it’s just 
unused memory
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Next Topic: Stack Machines

• A simple evaluation model
• No variables or registers
• A stack of values for intermediate results
• Each instruction:

– Takes its operands from the top of the stack 
– Removes those operands from the stack
– Computes the required operation on them
– Pushes the result on the stack
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Example of Stack Machine Operation

• The addition operation on a stack machine

5
7
9
…

5

7

9
…

po
p

po
p

⊕

add

12
9
…

push
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Example of a Stack Machine Program

• Consider two instructions
– push i    - place the integer i on top of the stack
– add       -  pop two elements, add them and put 
                   the result back on the stack

• A program to compute 7 + 5:
                       push 7
                       push 5
                       add
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Why Use a Stack Machine?

• Each operation takes operands from the same 
place and puts results in the same place

• This means a uniform compilation scheme

• And therefore a simpler compiler
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Why Use a Stack Machine?

• Location of the operands is implicit
– Always on the top of the stack

• No need to specify operands explicitly
• No need to specify the location of the result
• Instruction “add” as opposed to “add r1, r2” 

    ⇒ Smaller encoding of instructions
    ⇒ More compact programs

• This is one reason why Java Bytecodes and 
WebAssembly use a stack evaluation model
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Optimizing the Stack Machine

• The add instruction does 3 memory operations
– Two reads and one write to the stack
– The top of the stack is frequently accessed

• Idea: keep the top of the stack in a register (called 
accumulator)
– Register accesses are faster

• The “add” instruction is now
               acc ← acc + top_of_stack
– Only one memory operation!
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Stack Machine with Accumulator

Invariants
• The result of an expression is in the accumulator

• For op(e1,…,en) push the accumulator on the 
stack after computing each of e1,…,en-1
– After the operation pops n-1 values

• Expression evaluation preserves the stack
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Stack Machine with Accumulator. Example

• Compute 7 + 5 using an accumulator

…

acc

stack

5

7
…

push acc

acc ← 5

12

…

⊕

acc ← acc + top_of_stack

pop

…

7

acc ← 7
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A Bigger Example: 3 + (7 + 5)

 Code                                Acc        Stack
acc ← 3                                  3               <init>
push acc                                 3               3, <init>
acc ← 7                                  7              3, <init>
push acc                                 7              7, 3, <init>
acc ← 5                                  5              7, 3, <init>
acc ← acc + top_of_stack     12             7, 3, <init>
pop                                        12              3, <init>
acc ← acc + top_of_stack     15             3, <init>
pop                                        15              <init>
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Notes

• It is very important evaluation of a subexpression 
preserves the stack
– Stack before the evaluation of 7 + 5 is  3, <init>
– Stack after the evaluation of 7 + 5 is 3, <init>
– The first operand is on top of the stack


