
1

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications

Runtime Environments

CS143
Lecture 11

2

Status

• We have covered the front-end phases
– Lexical analysis
– Parsing
– Semantic analysis

• Next are the back-end phases
– Optimization
– Code generation

• We’ll do code generation first . . .

3

Run-time environments

• Before discussing code generation, we need to
understand what we are trying to generate

• There are a number of standard techniques for
structuring executable code that are widely used

4

Outline

• Management of run-time resources

• Correspondence between
– static (compile-time) and
– dynamic (run-time) structures

• Storage organization

5

Run-time Resources

• Execution of a program is initially under the
control of the operating system

• When a program is invoked:
– The OS allocates space for the program
– The code is loaded into part of the space
– The OS jumps to the entry point (i.e., “main”)

6

Memory Layout

Low Address

High Address

Memory

Code

Other Space

7

Notes

• By tradition, pictures of machine organization
have:
– Low address at the top
– High address at the bottom
– Lines delimiting areas for different kinds of data

• These pictures are simplifications
– E.g., not all memory need be contiguous

8

What is Other Space?

• Holds all data for the program
• Other Space = Data Space

• Compiler is responsible for:
– Generating code
– Orchestrating use of the data area

9

Code Generation Goals

• Two goals:
– Correctness
– Speed

• Most complications in code generation come from
trying to be fast as well as correct

10

Assumptions about Execution

1. Execution is sequential; control moves from one
point in a program to another in a well-defined
order

2. When a procedure is called, control eventually
returns to the point immediately after the call

Do these assumptions always hold?

11

Activations

• An invocation of procedure P is an activation of P

• The lifetime of an activation of P is
– All the steps to execute P
– Including all the steps in procedures P calls

12

Lifetimes of Variables

• The lifetime of a variable x is the portion of
execution in which x is defined

• Note that
– Lifetime is a dynamic (run-time) concept
– Scope is a static concept

13

Activation Trees

• Assumption (2) requires that when P calls Q, then
Q returns before P does

• Lifetimes of procedure activations are properly
nested

• Activation lifetimes can be depicted as a tree

14

Example

Class Main {
g() : Int { 1 };
f(): Int { g() };
main(): Int {{ g(); f(); }};

}
Main

fg

g

15

Example 2

Class Main {
g() : Int { 1 };
f(x:Int): Int { if x = 0 then g() else f(x - 1) fi};
main(): Int {{f(3); }};

}

What is the activation tree for this example?

16

Notes

• The activation tree depends on run-time behavior

• The activation tree may be different for every
program input

• Since activations are properly nested, a stack can
track currently active procedures

17

Example

Class Main {
g() : Int { 1 };
f(): Int { g() };
main(): Int {{ g(); f(); }};

}
Main Stack

Main

18

Example

Class Main {
g() : Int { 1 };
f(): Int { g() };
main(): Int {{ g(); f(); }};

}
Main

g

Stack

Main

g

19

Example

Class Main {
g() : Int { 1 };
f(): Int { g() };
main(): Int {{ g(); f(); }};

}
Main

g f

Stack

Main

f

20

Example

Class Main {
g() : Int { 1 };
f(): Int { g() };
main(): Int {{ g(); f(); }};

}
Main

fg

g

Stack

Main

f

g

21

Revised Memory Layout

Low Address

High Address

Memory

Code

Stack

22

Activation Records

• The information needed to manage one
procedure activation is called an activation record
(AR) or frame

• If procedure F calls G, then G’s activation record
contains a mix of info about F and G.

23

What is in G’s AR when F calls G?

• F is “suspended” until G completes, at which point
F resumes. G’s AR contains information needed
to resume execution of F.

• G’s AR may also contain:
– G’s return value (needed by F)
– Actual parameters to G (supplied by F)
– Space for G’s local variables

24

The Contents of a Typical AR for G

• Space for G’s return value
• Actual parameters
• Pointer to the previous activation record

– The control link; points to AR of caller of G
• Machine status prior to calling G

– Contents of registers & program counter
– Local variables

• Other temporary values

25

Example 2, Revisited

Class Main {
g() : Int { 1 };
f(x:Int):Int {if x=0 then g() else f(x - 1)(**)fi};
main(): Int {{f(3); (*)

 }};}

AR for f:
result

argument

control link

return address

26

Stack After Two Calls to f

Main

(**)

2
(result)f
(*)

3
(result)f

27

Notes

• Main has no argument or local variables and its
result is never used; its AR is uninteresting

• (*) and (**) are return addresses of the
invocations of f
– The return address is where execution resumes after a

procedure call finishes

• This is only one of many possible AR designs
– Would also work for C, Pascal, FORTRAN, etc.

28

The Main Point

The compiler must determine, at compile-time, the
layout of activation records and generate code

that correctly accesses locations in the activation
record

Thus, the AR layout and the code generator must
be designed together!

29

Example

The picture shows the state after the call to the 2nd
invocation of f returns

Main

(**)

2
1f
(*)

3
(result)f

30

Discussion

• The advantage of placing the return value 1st in a
frame is that the caller can find it at a fixed offset
from its own frame

• There is nothing magic about this organization
– Can rearrange order of frame elements
– Can divide caller/callee responsibilities differently
– An organization is better if it improves execution speed

or simplifies code generation

31

Discussion (Cont.)

• Real compilers hold as much of the frame as
possible in registers
– Especially the method result and arguments

32

Globals

• All references to a global variable point to the
same object
– Can’t store a global in an activation record

• Globals are assigned a fixed address once
– Variables with fixed address are “statically allocated”

• Depending on the language, there may be other
statically allocated values

33

Memory Layout with Static Data

Low Address

High Address

Memory

Code

Stack

Static Data

34

Heap Storage

• A value that outlives the procedure that creates it
cannot be kept in the AR

method foo() { new Bar }
The Bar value must survive deallocation of foo’s AR

• Languages with dynamically allocated data use a
heap to store dynamic data

35

Notes

• The code area contains object code
– For most languages, fixed size and read only

• The static area contains data (not code) with fixed
addresses (e.g., global data)
– Fixed size, may be readable or writable

• The stack contains an AR for each currently
active procedure
– Each AR usually fixed size, contains locals

• Heap contains all other data
– In C, heap is managed by malloc and free

36

Notes (Cont.)

• Both the heap and the stack grow

• Must take care that they don’t grow into each
other

• Solution: start heap and stack at opposite ends of
memory and let them grow towards each other

37

Memory Layout with Heap

Low Address

High Address

Memory

Code

Stack

Static Data

Heap

38

Data Layout

• Low-level details of machine architecture are
important in laying out data for correct code and
maximum performance

• Chief among these concerns is alignment

39

Alignment

• Most machines are 32 or 64 bit
– 8 bits in a byte
– 4 bytes in a word
– Machines are either byte or word addressable

• Data is word aligned if it begins at a word
boundary

• Most machines have some alignment restrictions
– Or performance penalties for poor alignment

40

Alignment (Cont.)

• Example: A string
“Hello”

Takes 5 characters (without a terminating \0)

• To word align next datum, add 3 “padding”
characters to the string

• The padding is not part of the string, it’s just
unused memory

41

Next Topic: Stack Machines

• A simple evaluation model
• No variables or registers
• A stack of values for intermediate results
• Each instruction:

– Takes its operands from the top of the stack
– Removes those operands from the stack
– Computes the required operation on them
– Pushes the result on the stack

42

Example of Stack Machine Operation

• The addition operation on a stack machine

5
7
9
…

5

7

9
…

po
p

po
p

⊕

add

12
9
…

push

43

Example of a Stack Machine Program

• Consider two instructions
– push i - place the integer i on top of the stack
– add - pop two elements, add them and put
 the result back on the stack

• A program to compute 7 + 5:
 push 7
 push 5
 add

44

Why Use a Stack Machine?

• Each operation takes operands from the same
place and puts results in the same place

• This means a uniform compilation scheme

• And therefore a simpler compiler

45

Why Use a Stack Machine?

• Location of the operands is implicit
– Always on the top of the stack

• No need to specify operands explicitly
• No need to specify the location of the result
• Instruction “add” as opposed to “add r1, r2”

 ⇒ Smaller encoding of instructions
 ⇒ More compact programs

• This is one reason why Java Bytecodes and
WebAssembly use a stack evaluation model

46

Optimizing the Stack Machine

• The add instruction does 3 memory operations
– Two reads and one write to the stack
– The top of the stack is frequently accessed

• Idea: keep the top of the stack in a register (called
accumulator)
– Register accesses are faster

• The “add” instruction is now
 acc ← acc + top_of_stack
– Only one memory operation!

47

Stack Machine with Accumulator

Invariants
• The result of an expression is in the accumulator

• For op(e1,…,en) push the accumulator on the
stack after computing each of e1,…,en-1
– After the operation pops n-1 values

• Expression evaluation preserves the stack

48

Stack Machine with Accumulator. Example

• Compute 7 + 5 using an accumulator

…

acc

stack

5

7
…

push acc

acc ← 5

12

…

⊕

acc ← acc + top_of_stack

pop

…

7

acc ← 7

49

A Bigger Example: 3 + (7 + 5)

 Code Acc Stack
acc ← 3 3 <init>
push acc 3 3, <init>
acc ← 7 7 3, <init>
push acc 7 7, 3, <init>
acc ← 5 5 7, 3, <init>
acc ← acc + top_of_stack 12 7, 3, <init>
pop 12 3, <init>
acc ← acc + top_of_stack 15 3, <init>
pop 15 <init>

50

Notes

• It is very important evaluation of a subexpression
preserves the stack
– Stack before the evaluation of 7 + 5 is 3, <init>
– Stack after the evaluation of 7 + 5 is 3, <init>
– The first operand is on top of the stack

