Top-Down Parsing and
 Introduction to Bottom-Up Parsing

CS143
 Lecture 7

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications

Predictive Top-Down Parsers

- Like recursive-descent but parser can "predict" which production to use
- By looking at the next few tokens
- No backtracking
- Predictive parsers accept LL(k) grammars
- L means "left-to-right" scan of input
- L means "leftmost derivation"
- k means "predict based on k tokens of lookahead"
- In practice, LL(1) is used

Recursive Descent vs. LL(1)

- In recursive-descent,
- At each step, many choices of production to use
- Backtracking used to undo bad choices
- In LL(1),
- At each step, only one choice of production
- That is
- When a non-terminal A is leftmost in a derivation
- And the next input symbol is t
- There is a unique production $A \rightarrow \alpha$ to use
- Or no production to use (an error state)
- $\mathrm{LL}(1)$ is a recursive descent variant without backtracking

Predictive Parsing and Left Factoring

- Recall the grammar

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{EIT} \\
& \mathrm{~T} \rightarrow \text { int I int * } \mathrm{T} \text { (} \mathrm{E})
\end{aligned}
$$

- Hard to predict because
- For T two productions start with int
- For E it is not clear how to predict
- We need to left-factor the grammar

Left-Factoring Example

- Recall the grammar

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \text { int I int * } \mathrm{T} \text { (} \mathrm{E})
\end{aligned}
$$

- Factor out common prefixes of productions

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{TX} \\
& \mathrm{X} \rightarrow+\mathrm{EI} \mathrm{\varepsilon} \\
& \mathrm{~T} \rightarrow \text { int } \mathrm{YI}(\mathrm{E}) \\
& \mathrm{Y} \rightarrow{ }^{\star} \mathrm{T} \mid \varepsilon
\end{aligned}
$$

LL(1) Parsing Table Example

- Left-factored grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \operatorname{int} Y & Y \rightarrow * T \mid \varepsilon
\end{array}
$$

- The LL(1) parsing table: next input token

	int	$*$	+	$($	$)$	$\$$
E	TX			TX		
X			+E		${ }^{\varepsilon}$	${ }^{\varepsilon}$
T	$\operatorname{int} \mathrm{Y}$			(E)		
Y		${ }^{*} \mathrm{~T} R$	${ }^{\varepsilon}$		${ }^{\varepsilon}$	${ }^{\varepsilon}$

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

LL(1) Parsing Table Example

- Consider the [E, int] entry
- "When current non-terminal is E and next input is int, use production $\mathrm{E} \rightarrow \mathrm{T}$ X"
- This can generate an int in the first position

	int	$*$	+	$($	$)$	$\$$
E	TX			TX		
X			+E		${ }^{*}$	${ }^{\varepsilon}$
T	$\operatorname{int} \mathrm{Y}$			(E)		
Y		${ }^{*} \mathrm{~T}$	ε		ε	ε

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) I \operatorname{int} Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

LL(1) Parsing Tables. Errors

- Consider the [Y,+] entry
- "When current non-terminal is Y and current token is +, get rid of Y "
-Y can be followed by + only if $\mathrm{Y} \rightarrow \varepsilon$

	int	${ }^{*}$	+	$($	$)$	$\$$
E	TX			TX		
X			+E		${ }^{\varepsilon}$	ε
T	int Y			(E)		
Y		${ }^{*} \mathrm{~T}$	${ }^{\varepsilon}$		${ }^{\varepsilon}$	${ }^{\varepsilon}$

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

LL(1) Parsing Tables. Errors

- Consider the [Y,(] entry
- "There is no way to derive a string starting with (from non-terminal $Y^{\prime \prime}$
- Blank entries indicate error situations

	int	$*$	+	$($	$)$	$\$$
E	TX			TX		
X			+E		${ }^{\varepsilon}$	${ }^{\varepsilon}$
T	$\operatorname{int} \mathrm{Y}$			(E)		
Y		${ }^{*} \mathrm{~T}$	${ }^{\varepsilon}$		${ }^{\varepsilon}$	${ }^{\varepsilon}$

Using Parsing Tables

- Method similar to recursive descent, except
- For the leftmost non-terminal S
- We look at the next input token a
- And choose the production shown at [S,a]
- A stack records frontier of parse tree
- Non-terminals that have yet to be expanded
- Terminals that have yet to matched against the input
- Top of stack = leftmost pending terminal or non-terminal
- Reject on reaching error state
- Accept on end of input \& empty stack

LL(1) Parsing Algorithm (using the table)

initialize stack = <S \$> and next
repeat
case stack of
$<X$, rest> : if $T[X, *$ next $]=Y_{1} \ldots Y_{n}$ then stack $\leftarrow<Y_{1} \ldots Y_{n}$, rest>; else error ();
<t, rest> : if $\mathrm{t}==$ *next ++ then stack \leftarrow <rest>; else error ();
until stack $==$ >

LL(1) Parsing Algorithm

\$ marks bottom of stack
initialize stack $=<\mathrm{S} \$>$ and next
repeat
case stack of For non-terminal X on top of stack, lookup production
$<X$, rest $>:$ if $T[X, *$ next $]=Y_{1} \ldots Y_{n}$ then stack $\leftarrow<Y_{1} \ldots Y_{n}$, rest>; else error ();

Pop X, push

$$
<\mathrm{t} \text {, rest> : if } \mathrm{t}=\underset{\rightarrow}{*} \text { next }++
$$

For terminal t on top of stackthen stack $\leftarrow<$ rest>; check t matches next input else error (); token.
until stack $==$ < >
production rhs
on stack.
Note leftmost symbol of rhs
is on top of the stack.

$\mathrm{E} \rightarrow \mathrm{T} \mathrm{X}$
 LL(1) Parsing Example $\quad X \rightarrow+E \mid \varepsilon$

Stack	Input	Action
E \$	int * int \$	T X
TX \$	int * int \$	int Y
int Y X \$	int * int \$	terminal
Y X \$	* int \$	* T
* T X \$	* int \$	terminal
T X \$	int \$	int Y
int Y X \$	int \$	terminal
Y X \$	\$	ε
X \$	\$	ε
\$	\$	ACCEPT

Constructing Parsing Tables: The Intuition

- Consider non-terminal A , production $\mathrm{A} \rightarrow \alpha$, and token t

1. $\operatorname{Add} T[A, t]=\alpha$ if $A \rightarrow \alpha \rightarrow{ }^{*} t \beta$
$-\alpha$ can derive at in the first position

- We say that $t \in$ First (α)

Greek letters denote strings of non-terminals and terminals
2. Add $T[A, t]=\varepsilon$
if $A \rightarrow \alpha \rightarrow{ }^{*} \varepsilon$ and $S \rightarrow{ }^{*} \gamma$ At δ

- Useful if stack has A, input is t, and A cannot derive t
- In this case only option is to get rid of A (by deriving ε)
- Can work only if t can follow A in at least one derivation
- We say $t \in$ Follow(A)

Computing First Sets

Definition

$$
\text { First }(\mathrm{X})=\left\{\mathrm{t} \mid \mathrm{X} \rightarrow^{*} \operatorname{ta}\right\} \cup\left\{\varepsilon \mid X \rightarrow^{*} \varepsilon\right\}
$$

Algorithm sketch:

1. $\operatorname{First}(\mathrm{t})=\{\mathrm{t}\}$
2. $\varepsilon \in \operatorname{First}(X)$

- if $X \rightarrow \varepsilon$ or
- if $X \rightarrow A_{1} \ldots A_{n}$ and $\varepsilon \in \operatorname{First}\left(A_{i}\right)$ for all $1 \leq i \leq n$

3. First(α) \subseteq First (X)

- if $X \rightarrow \alpha$ or
- if $X \rightarrow A_{1} \ldots A_{n} \alpha$ and $\varepsilon \in \operatorname{First}\left(A_{i}\right)$ for all $1 \leq i \leq n$

First Sets: Example

1. $\operatorname{First}(\mathrm{t})=\{\mathrm{t}\}$
2. $\varepsilon \in \operatorname{First}(X)$

- if $X \rightarrow \varepsilon$ or
- if $X \rightarrow A_{1} \ldots A_{n}$ and $\varepsilon \in \operatorname{First}\left(A_{i}\right)$ for all $1 \leq i \leq n$

3. First $(\alpha) \subseteq$ First (X)

- if $X \rightarrow \alpha$ or
- if $X \rightarrow A_{1} \ldots A_{n} \alpha$ and $\varepsilon \in \operatorname{First}\left(A_{i}\right)$ for all $1 \leq i \leq n$
$\mathrm{E} \rightarrow \mathrm{TX} \quad \mathrm{X} \rightarrow+\mathrm{El} \varepsilon$
$T \rightarrow(E)$ lint $Y \quad Y \rightarrow{ }^{*} T \mid \varepsilon$

First(E) $=$
First $(\mathrm{T})=$

First $(X)=$
First $(Y)=$

First Sets: Example

- Recall the grammar

$$
\begin{aligned}
& E \rightarrow T X \\
& T \rightarrow(E) I \text { int } Y
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \rightarrow+\mathrm{E} \mid \varepsilon \\
& \mathrm{Y} \rightarrow{ }^{*} \mathrm{~T} \mid \varepsilon
\end{aligned}
$$

- First sets

First(() = \{ ($\}$
First()) = \{) \}
First(int) $=\{$ int $\}$
First(+) $=\{+\}$
First($\left.{ }^{*}\right)=\left\{{ }^{*}\right\}$

First(T) $=\{$ int, ($\}$
First(E) $=\{$ int, ($\}$
First $(X)=\{+, \varepsilon\}$
First $(Y)=\left\{{ }^{*}, \varepsilon\right\}$

Computing Follow Sets

- Definition:

$$
\text { Follow }(X)=\left\{t \mid S \rightarrow^{*} \beta X t \delta\right\}
$$

- Intuition
- If $X \rightarrow A B$ then First $(B) \subseteq \operatorname{Follow}(A)$ and Follow $(X) \subseteq$ Follow (B)
- if $B \rightarrow{ }^{*} \varepsilon$ then Follow $(X) \subseteq$ Follow(A)
- If S is the start symbol then $\$ \in$ Follow(S)

Computing Follow Sets (Cont.)

Algorithm sketch:

1. $\$ \in$ Follow(S)
2. For each production $A \rightarrow \alpha X \beta$

- First(β) - $\{\varepsilon\} \subseteq$ Follow(X)

3. For each production $A \rightarrow \alpha X \beta$ where $\varepsilon \in$ First((β) - Follow(A) \subseteq Follow (X)

Computing the Follow Sets (for the Non-Terminals)

- Recall the grammar

$$
\begin{aligned}
& E \rightarrow T X \\
& T \rightarrow(E) I \text { int } Y
\end{aligned}
$$

$$
\mathrm{X} \rightarrow+\mathrm{El} \varepsilon
$$

$$
\mathrm{Y} \rightarrow{ }^{*} \mathrm{~T} \mid \varepsilon
$$

- $\$ \in \operatorname{Follow}(E)$

Computing the Follow Sets (for the Non-Terminals)

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

- $\$ \in$ Follow(E)
- First $(X) \subseteq$ Follow (T)
- Follow(E) \subseteq Follow(X)
- Follow(E) \subseteq Follow(T) because $\varepsilon \in \operatorname{First}(X)$

Computing the Follow Sets (for the Non-Terminals)

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

- $\quad \$ \in$ Follow(E)
- First $(\mathrm{X}) \subseteq$ Follow (T)
- Follow(E) \subseteq Follow(X)
- Follow(E) \subseteq Follow(T) because $\varepsilon \in \operatorname{First}(X)$
-) $\in \operatorname{Follow}(E)$

Computing the Follow Sets (for the Non-Terminals)

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

- $\$ \in$ Follow(E)
- First $(\mathrm{X}) \subseteq$ Follow (T)
- Follow(E) \subseteq Follow(X)
- Follow(E) \subseteq Follow(T) because $\varepsilon \in \operatorname{First}(X)$
-) \in Follow(E)
- Follow $(\mathrm{T}) \subseteq$ Follow (Y)

Computing the Follow Sets (for the Non-Terminals)

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

- $\$ \in$ Follow(E)
- First $(\mathrm{X}) \subseteq$ Follow (T)
- Follow(E) \subseteq Follow(X)
- Follow(E) \subseteq Follow(T) because $\varepsilon \in \operatorname{First}(X)$
-) \in Follow(E)
- Follow(T) \subseteq Follow(Y)
- Follow $(X) \subseteq$ Follow(E)

Computing the Follow Sets (for the Non-Terminals)

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

- $\$ \in$ Follow(E)
- First $(\mathrm{X}) \subseteq$ Follow (T)
- Follow(E) \subseteq Follow(X)
- Follow(E) \subseteq Follow(T) because $\varepsilon \in \operatorname{First}(X)$
-) \in Follow(E)
- Follow $(\mathrm{T}) \subseteq$ Follow (Y)
- Follow $(X) \subseteq$ Follow(E)
- Follow $(\mathrm{Y}) \subseteq$ Follow(T)

Computing the Follow Sets (for the Non-Terminals)

- Recall the grammar

$$
\begin{aligned}
& E \rightarrow T X \\
& T \rightarrow(E) I \text { int } Y
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \rightarrow+\mathrm{EI} \varepsilon \\
& \mathrm{Y} \rightarrow{ }^{*} \mathrm{~T} \mid \varepsilon
\end{aligned}
$$

- $\quad \$ \in$ Follow(E)
- First $(X) \subseteq$ Follow(T)
- Follow(E) \subseteq Follow(X)
- Follow(E) \subseteq Follow(T)
-) \in Follow(E)
- Follow $(\mathrm{T}) \subseteq$ Follow (Y)
- Follow $(X) \subseteq$ Follow(E)
- Follow $(\mathrm{Y}) \subseteq$ Follow(T)

Computing the Follow Sets (for the Non-Terminals)

Computing the Follow Sets (for the Non-Terminals)

Computing the Follow Sets (for all symbols)

Follow Sets: Example

- Recall the grammar

$$
\begin{aligned}
& E \rightarrow T X \\
& T \rightarrow(E) I \text { int } Y
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \rightarrow+\mathrm{E} \mid \varepsilon \\
& \mathrm{Y} \rightarrow{ }^{*} \mathrm{TI} \varepsilon
\end{aligned}
$$

- Follow sets

Follow (+) = \{int, ($\} \quad$ Follow (* $)=\{$ int, ($\}$
Follow (() = \{int, ($\} \quad$ Follow (E) $=\{\$)$,
Follow (X) $=\{\$$,) $\}$
Follow()) =\{+,) , \$\}
Follow (T) $=\{\$,+$,)
Follow (Y) $=\{\$,+)$,
Follow(int) $=\left\{{ }^{*},+\right.$,) , \$\}

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
- For each terminal $t \in \operatorname{First}(\alpha)$ do
- $\mathrm{T}[\mathrm{A}, \mathrm{t}]=\alpha$
- If $\varepsilon \in \operatorname{First}(\alpha)$, then for each $t \in \operatorname{Follow}(A)$ do

$$
\text { - } \mathrm{T}[\mathrm{~A}, \mathrm{t}]=\varepsilon
$$

- If $\varepsilon \in \operatorname{First}(\mathrm{a})$ and $\$ \in \operatorname{Follow}(A)$ do

$$
\cdot \mathrm{T}[\mathrm{~A}, \$]=\varepsilon
$$

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not $\mathrm{LL}(1)$
- If G is ambiguous
- If G is left recursive
- If G is not left-factored
- And in other cases as well
- Most programming language CFGs are not LL(1)

Bottom-Up Parsing

- Bottom-up parsing is more general than top-down parsing
- And just as efficient
- Builds on ideas in top-down parsing
- Bottom-up is the preferred method
- Concepts today, algorithms next time

An Introductory Example

- Bottom-up parsers don't need left-factored grammars
- Revert to the "natural" grammar for our example:

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \text { I } \mathrm{t} \\
& \mathrm{~T} \rightarrow \text { int * } \mathrm{T} \text { int } \mathrm{I} \text { (E) }
\end{aligned}
$$

- Consider the string: int * int + int

The Idea

$$
\begin{aligned}
& E \rightarrow T+E \text { I T } \\
& T \rightarrow \text { int }{ }^{*} T \text { int I (E) }
\end{aligned}
$$

Bottom-up parsing reduces a string to the start symbol by inverting productions:

$$
\begin{aligned}
& \text { int * int + int } \\
& \text { int * } T+\text { int } \\
& T+\text { int } \\
& T+T \\
& T+E \\
& E
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T} \rightarrow \text { int } \\
& \mathrm{T} \rightarrow \text { int * } \mathrm{T} \\
& \mathrm{~T} \rightarrow \text { int } \\
& \mathrm{E} \rightarrow \mathrm{~T} \\
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E}
\end{aligned}
$$

Observation

$$
\begin{aligned}
& E \rightarrow T+E \text { I T } \\
& T \rightarrow \text { int * } T \text { int }(E)
\end{aligned}
$$

- Read the productions in reverse (from bottom to top)
- This is a reverse rightmost derivation!

$$
\begin{aligned}
& \text { int *int + int } \\
& \text { int * T + int } \\
& \text { T + int } \\
& \text { T + T } \\
& \text { T + E } \\
& \text { E }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{T} & \rightarrow \text { int } \\
\mathrm{T} & \rightarrow \text { int * } \mathrm{T} \\
\mathrm{~T} & \rightarrow \text { int } \\
\mathrm{E} & \rightarrow \mathrm{~T} \\
\mathrm{E} & \rightarrow \mathrm{~T}+\mathrm{E}
\end{aligned}
$$

Important Fact \#1

Important Fact \#1 about bottom-up parsing:

A bottom-up parser traces a rightmost derivation in reverse

A Bottom-up Parse

$$
\begin{aligned}
& E \rightarrow T+E \text { I T } \\
& T \rightarrow \text { int * } T \text { int I (E) }
\end{aligned}
$$

int * int + int
int * $T+$ int
$T+$ int
$T+T$
$T+E$
E

A Bottom-up Parse in Detail (1)

int * int + int
int * int + int

A Bottom-up Parse in Detail (2)

int * int + int
int * T + int

A Bottom-up Parse in Detail (3)

int * int + int
int * T + int

T + int

A Bottom-up Parse in Detail (4)

> int * int + int
> int * $T+$ int
> T + int
> T + T

A Bottom-up Parse in Detail (5)

A Bottom-up Parse in Detail (6)

> int * int + int
> int * $T+$ int
> T + int
> $T+T$
> $T+E$
> E

Where Do Reductions Happen?

Important Fact \#1 has an interesting consequence:

- Let $\alpha \beta \omega$ be a step of a bottom-up parse
- Assume the next reduction is by $X \rightarrow \beta$
- Then ω is a string of terminals

Why? Because $\alpha X_{\omega} \rightarrow \alpha \beta \omega$ is a step in a right-most derivation

Notation

- Idea: Split string into two substrings
- Right substring is as yet unexamined by parsing (a string of terminals)
- Left substring has terminals and non-terminals
- The dividing point is marked by a l
- The I is not part of the string
- Initially, all input is unexamined $\mid x_{1} x_{2} \ldots x_{n}$

Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of actions:

Shift

Reduce

Shift

- Shift: Move I one place to the right
- Shifts a terminal to the left string

$$
\text { ABClxyz } \Rightarrow \text { ABCxlyz }
$$

Reduce

- Apply an inverse production at the right end of the left string
- If $A \rightarrow x y$ is a production, then

$$
\text { Cbxylijk } \Rightarrow \text { CbAlijk }
$$

The Example with Reductions Only

int * int I + int	reduce $\mathrm{T} \rightarrow$ int
int * T I + int	reduce $\mathrm{T} \rightarrow$ int * T
$\mathrm{T}+$ int I	reduce $\mathrm{T} \rightarrow$ int
$\mathrm{T}+\mathrm{T}$ I	reduce $\mathrm{E} \rightarrow \mathrm{T}$
$\mathrm{T}+\mathrm{E}$ I	reduce $\mathrm{E} \rightarrow \mathrm{T}+\mathrm{E}$
EI	

The Example with Shift-Reduce Parsing

I int * int + int	shift
int I * int + int	shift
int * I int + int	shift
int * int I + int	reduce $\mathrm{T} \rightarrow$ int
int * T I + int	reduce $\mathrm{T} \rightarrow$ int * T
T I + int	shift
$\mathrm{T}+$ I int	shift
$\mathrm{T}+$ int I	reduce $\mathrm{T} \rightarrow$ int
$\mathrm{T}+\mathrm{T}$ I	reduce $\mathrm{E} \rightarrow \mathrm{T}$
$\mathrm{T}+\mathrm{E}$ I	
E I	

A Shift-Reduce Parse in Detail (1)

l int * int + int
$\underset{\uparrow}{\operatorname{int}} *$ int $+\quad$ int

A Shift-Reduce Parse in Detail (2)

I int * int + int
int I *int + int

A Shift-Reduce Parse in Detail (3)

| int * int + int
int I *int + int
int * | int + int

A Shift-Reduce Parse in Detail (4)

| int * int + int
int I *int + int
int * | int + int
int * int I + int

A Shift-Reduce Parse in Detail (5)

I int * int + int
int I *int + int
int * | int + int
int * int I + int
int * T I + int

A Shift-Reduce Parse in Detail (6)

I int * int + int
int I *int + int
int * | int + int
int * int I + int
int * T I + int
TI + int

A Shift-Reduce Parse in Detail (7)

I int * int + int
int I * int + int
int * I int + int
int * int I + int
int * T I + int
TI + int
T + I int

A Shift-Reduce Parse in Detail (8)

$$
\begin{aligned}
& \text { I int * int + int } \\
& \text { int I * int + int } \\
& \text { int * I int + int } \\
& \text { int * int I + int } \\
& \text { int * T I + int } \\
& \text { T I + int } \\
& \text { T + I int } \\
& \text { T + int I }
\end{aligned}
$$

A Shift-Reduce Parse in Detail (9)

I int * int + int
int I * int + int
int * I int + int
int * int I + int
int * T I + int
TI + int
T + I int
T + int I
T + T I

A Shift-Reduce Parse in Detail (10)

I int * int + int
int I *int + int
int * I int + int
int * int I + int
int * TI + int
TI + int
T + I int
T + int I
T + TI
T + E I

A Shift-Reduce Parse in Detail (11)

\| int * int + int	
int * int + int	
int ${ }^{\text {int }} \mathrm{l}+\mathrm{int}$	
int * $T+$ + int	
TI+ int	,
T+lint	T
T+int I	
T+TI	int * int +
T+EI	
EI	

The Stack

- Left string can be implemented by a stack
- Top of the stack is the I
- Shift pushes a terminal on the stack
- Reduce pops 0 or more symbols off of the stack (production rhs) and pushes a non-terminal on the stack (production lhs)

Conflicts

- In a given state, more than one action (shift or reduce) may lead to a valid parse
- If it is legal to shift or reduce, there is a shift-reduce conflict
- If it is legal to reduce by two different productions, there is a reduce-reduce conflict
- You will see such conflicts in your project!
- More next time . . .

