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Announcements

• PA1 & WA1
– Due today at midnight

• PA2 & WA2
– Assigned today
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Outline

• Extensions of CFG for parsing
– Precedence declarations
– Error handling
– Semantic actions

• Constructing an abstract syntax tree (AST)

• Recursive descent parsing
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Error Handling

• Purpose of the compiler is
– To detect non-valid programs
– To translate the valid ones

• Many kinds of possible errors

 Error kind       Example (C)             Detected by …
Lexical              … $ …                           Lexer
Syntax              … x *% …                      Parser
Semantic          … int x; y = x(3); …       Type checker
Correctness      your favorite program         Tester/User
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Syntax Error Handling

• Error handler should
– Report errors accurately and clearly
– Recover from an error quickly
– Not slow down compilation of valid code

• Good error handling is not easy to achieve
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Syntax Error Recovery

• Approaches from simple to complex
– Panic mode
– Error productions
– Automatic local or global correction

• Not all are supported by all parser generators
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Error Recovery: Panic Mode

• Simplest, most popular method

• When an error is detected:
– Discard tokens until one with a clear role is found
– Continue from there

• Such tokens are called synchronizing tokens
– Typically the statement or expression terminators
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Error Recovery: Panic Mode (Cont.)

• Consider the erroneous expression
             (1 + + 2) + 3

• Panic-mode recovery:
– Skip ahead to next integer and then continue

• Bison: use the special terminal error to describe 
how much input to skip
       E → int | E + E | ( E ) | error int | ( error )
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Error Recovery: Error Productions

• Idea: specify in the grammar known common mistakes

• Essentially promotes common errors to alternative syntax

• Example: 
– Write 5 x instead of 5 * x
– Add the production E → … | E E

• Disadvantage
– Complicates the grammar
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Error Recovery: Local and Global Correction

• Idea: find a correct “nearby” program 
– Try token insertions and deletions
– Exhaustive search

• Disadvantages: 
– Hard to implement
– Slows down parsing of correct programs
– “Nearby” is not necessarily “the intended” program
– Not supported by most tools
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Syntax Error Recovery: Past and Present

• Past
– Slow recompilation cycle (even once a day)
– Find as many errors in one cycle as possible
– Researchers could not let go of the topic

• Present
– Quick recompilation cycle
– Users tend to correct one error/cycle
– Complex error recovery is less compelling
– Panic-mode seems enough
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Abstract Syntax Trees

• So far a parser traces the derivation of a 
sequence of tokens

• The rest of the compiler needs a structural 
representation of the program

• Abstract syntax trees
– Like parse trees but ignore some details
– Abbreviated as AST
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Abstract Syntax Trees (Cont.)

• Consider the grammar
        E → int | ( E ) | E + E 

• And the string
       5 + (2 + 3)

• After lexical analysis (a list of tokens)
          int5 ‘+’ ‘(‘ int2 ‘+’ int3 ‘)’

• During parsing we build a parse tree …
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Example of Parse Tree

E

E E

( E )

+

E +

int5

int2

E

int3

• Traces the operation of 
the parser

• Does capture the 
nesting structure

• But too much info
– Parentheses
– Single-successor nodes
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Example of Abstract Syntax Tree

• Also captures the nesting structure
• But abstracts from the concrete syntax

=> more compact and easier to use
• An important data structure in a compiler

PLUS

PLUS

  2  5   3
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Semantic Actions Extension to CFGs

• This is what we’ll use to construct ASTs

• Each grammar symbol may have attributes
– For terminal symbols (lexical tokens) attributes can be 

calculated by the lexer

• Each production may have an action
– Written as  X → Y1…Yn   { action }
– That can refer to or compute symbol attributes
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Semantic Actions: Example

• Consider the grammar
                         E → int | E + E | ( E )

• For each symbol X define an attribute X.val
– For terminals, val is the associated lexeme
– For non-terminals, val is the expression’s value (and is computed 

from values of subexpressions)

• We annotate the grammar with actions:
E → int                 { E.val = int.val }
      | E1 + E2         { E.val = E1.val + E2.val }
      | ( E1 )            { E.val = E1.val }
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Semantic Actions: Example (Cont.)

      Productions                 Equations
E  → E1 + E2                              E.val  = E1.val + E2.val
E1 → int5                          E1.val = int5.val  = 5
E2 → (E3)                         E2.val = E3.val
E3 → E4 + E5                   E3.val = E4.val + E5.val
E4 → int2                          E4.val = int2.val = 2
E5 → int3                          E5.val = int3.val  = 3

• String:    5 + (2 + 3)
• Tokens:   int5 ‘+’ ‘(‘ int2 ‘+’ int3 ‘)’
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Semantic Actions: Notes

• Semantic actions specify a system of equations

• Declarative Style
– Order of resolution is not specified
– The parser figures it out

• Imperative Style
– The order of evaluation is fixed
– Important if the actions manipulate global state



Semantic Actions: Notes

• We’ll explore actions as pure equations
– But note bison has a fixed order of evaluation for 

actions

• Example:
        E3.val = E4.val + E5.val
– Must compute E4.val and E5.val before E3.val 
– We say that E3.val depends on E4.val and E5.val

20
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Dependency Graph

E

E1 E2

( E3 )

+

E4
+

int5

int2

E5

int3

    + 

   + 

         

        

  2 

  5 

• Each node labeled E has 
one slot for the val 
attribute

• Note the dependencies

  3
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Evaluating Attributes

• An attribute must be computed after all its 
successors in the dependency graph have been 
computed 
– In previous example attributes can be computed 

bottom-up

• Such an order exists when there are no cycles
– Cyclically defined attributes are not legal
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Dependency Graph

E

E1 E2

( E3 )

+

E4
+

int5

int2

E5

int3

   10 

   5 

  5   5

  3 2

  2 

  5 

  3
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Semantic Actions: Notes (Cont.)

• Synthesized attributes
– Calculated from attributes of descendents in the parse 

tree
– E.val is a synthesized attribute
– Can always be calculated in a bottom-up order

• Grammars with only synthesized attributes are 
called S-attributed grammars
– Most common case
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Semantic Actions: Notes (Cont.)

• Semantic actions can be used to build ASTs

• And many other things as well
– Also used for type checking, code generation, 

computation, …

• Process is called syntax-directed translation
– Substantial generalization over CFGs
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Constructing an AST

• We first define the AST data type
– Supplied by us for the project

• Consider an abstract tree type with two constructors:

mkleaf(n) 

mkplus(

T1

)    =,

T2

=

PLUS

T1 T2

  n
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Constructing an AST

• We define a synthesized attribute ast 
– Values of ast values are ASTs
– We assume that int.lexval is the value of the integer 

lexeme
– Computed using semantic actions

E → int              E.ast = mkleaf(int.lexval)     
      | E1 + E2      E.ast = mkplus(E1.ast, E2.ast)
      | ( E1 )          E.ast = E1.ast
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Abstract Syntax Tree Example

• Consider the string int5 ‘+’ ‘(‘ int2 ‘+’ int3 ‘)’
• A bottom-up evaluation of the ast attribute:

E.ast = mkplus(mkleaf(5),
                         mkplus(mkleaf(2), mkleaf(3))

PLUS

PLUS

  2  5 3
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Summary

• We can specify language syntax using CFG

• A parser will answer whether s ∈ L(G)
– … and will trace a parse tree
– … in whose productions we build an AST
– … that we pass on to the rest of the compiler
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Intro to Top-Down Parsing: The Idea

• The parse tree is constructed
– From the top
– From left to right

• Terminals are seen in order of 
appearance in the token stream: 

             t2  t5  t6  t8  t9

1

t2 3

4

t5

7

t6

t9

t8
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Recursive Descent Parsing

• Consider the grammar
      E → T |T + E
      T → int  | int * T | ( E )

• Token stream is:   ( int5 )

• Start with top-level non-terminal E
– Try the rules for E in order
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Recursive Descent Parsing

E → T |T + E 
T → int  | int * T | ( E )

E

( int5 )
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Recursive Descent Parsing

E → T |T + E 
T → int  | int * T | ( E )

E

T

( int5 )
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Recursive Descent Parsing

E → T |T + E 
T → int  | int * T | ( E )

int

( int5 )

E

T

Mismatch: int is not ( !
Backtrack …
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Recursive Descent Parsing

E → T |T + E 
T → int  | int * T | ( E )

E

T

( int5 )
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Recursive Descent Parsing

E → T |T + E 
T → int  | int * T | ( E )

E

T

( int5 )

int * T
Mismatch: int is not ( !
Backtrack …
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Recursive Descent Parsing

E → T |T + E 
T → int  | int * T | ( E )

E

T

( int5 )
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Recursive Descent Parsing

E → T |T + E 
T → int  | int * T | ( E )

E

T

( int5 )

( E )
Match!  Advance input.
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Recursive Descent Parsing

E → T |T + E 
T → int  | int * T | ( E )

E

T

( int5 )

( E )
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Recursive Descent Parsing

E → T |T + E 
T → int  | int * T | ( E )

E

T

( int5 )

( E )

T
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Recursive Descent Parsing

E → T |T + E 
T → int  | int * T | ( E )

E

T

( int5 )

( E )

T

int

Match!  Advance input.
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Recursive Descent Parsing

E → T |T + E 
T → int  | int * T | ( E )

E

T

( int5 )

( E )

T

int

Match!  Advance input.
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Recursive Descent Parsing

E → T |T + E 
T → int  | int * T | ( E )

E

T

( int5 )

( E )

T

int

End of input, accept.
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A Recursive Descent Parser: Preliminaries

• Let TOKEN be the type of tokens
– Special tokens INT, OPEN, CLOSE, PLUS, TIMES

• Let the global next point to the next token
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A (Limited) Recursive Descent Parser (2)

• Define boolean functions that check the token 
string for a match of
– A given token terminal

bool term(TOKEN tok) { return *next++ == tok; }
– The nth production of S:

bool Sn() { … }
– Try all productions of S:                         

bool S() { … }
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A (Limited) Recursive Descent Parser (3)

• For production E → T 
bool E1() { return T(); }

• For production E → T + E 
bool E2() { return T() && term(PLUS) && E(); }

• For all productions of E (with backtracking) 
bool E() {

TOKEN *save = next;
return    (next = save, E1()) 
          || (next = save,  E2());   } 
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A (Limited) Recursive Descent Parser (4)

• Functions for non-terminal T
bool T1() { return term(INT); }
bool T2() { return term(INT) && term(TIMES) && T(); }
bool T3() { return term(OPEN) && E() && term(CLOSE); }

bool T() {
   TOKEN *save = next;
   return    (next = save, T1() 
             || (next = save,  T2()) 
             || (next = save,  T3()); } 
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Recursive Descent Parsing. Notes.

• To start the parser 
– Initialize next to point to first token
– Invoke E()

• Easy to implement by hand
– But not completely general
– Cannot backtrack once a production is successful
– Works for grammars where at most one production can succeed 

for a non-terminal



Example

E → T | T + E                                                           ( int )
T → int  | int * T | ( E )

bool term(TOKEN tok) { return *next++ == tok; }

bool E1() { return T(); }
bool E2() { return T() && term(PLUS) && E(); }

bool E()  {TOKEN *save = next; return     (next = save, E1()) 
                                                     || (next = save,  E2());   }

bool T1() { return term(INT); }
bool T2() { return term(INT) && term(TIMES) && T(); }
bool T3() { return term(OPEN) && E() && term(CLOSE); }

bool T() { TOKEN *save = next;  return    (next = save, T1()) 
                                                     || (next = save,  T2()) 
                                                     || (next = save,  T3()); } 
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When Recursive Descent Does Not Work

• Consider a production S → S a
          bool S1() { return S() && term(a); } 
          bool S() { return  S1(); }

• S() goes into an infinite loop

• A left-recursive grammar has a non-terminal S
           S →+ Sα   for some α

• Recursive descent does not work in such cases
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Elimination of Left Recursion

• Consider the left-recursive grammar
                       S → S α | β

• S generates all strings starting with a β and 
followed by a number of α

• Can rewrite using right-recursion
                 S → β S’
                 S’ → α S’ | ε
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More Elimination of Left-Recursion

• In general
                  S → S α1 | … | S αn | β1 | … | βm

• All strings derived from S start with one of 
β1,…,βm and continue with several instances of 
α1,…,αn 

• Rewrite as
             S → β1 S’ | … | βm S’
             S’ → α1 S’ | … | αn S’ | ε 
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General Left Recursion

• The grammar 
         S → A α | δ
         A → S β
 is also left-recursive because

            S →+ S β α

• This left-recursion can also be eliminated

• See Dragon Book for general algorithm
– Section 4.3
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Summary of Recursive Descent

• Simple and general parsing strategy
– Left-recursion must be eliminated first
– … but that can be done automatically

• Historically unpopular because of backtracking
– Was thought to be too inefficient
– In practice, fast and simple on modern machines

• In practice, backtracking is eliminated by 
restricting the grammar


