
1

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications

Error Handling 
Syntax-Directed Translation 
Recursive Descent Parsing

CS143
Lecture 6

2

Announcements

• PA1 & WA1
– Due today at midnight

• PA2 & WA2
– Assigned today

3

Outline

• Extensions of CFG for parsing
– Precedence declarations
– Error handling
– Semantic actions

• Constructing an abstract syntax tree (AST)

• Recursive descent parsing

4

Error Handling

• Purpose of the compiler is
– To detect non-valid programs
– To translate the valid ones

• Many kinds of possible errors

 Error kind Example (C) Detected by …
Lexical … $ … Lexer
Syntax … x *% … Parser
Semantic … int x; y = x(3); … Type checker
Correctness your favorite program Tester/User

5

Syntax Error Handling

• Error handler should
– Report errors accurately and clearly
– Recover from an error quickly
– Not slow down compilation of valid code

• Good error handling is not easy to achieve

6

Syntax Error Recovery

• Approaches from simple to complex
– Panic mode
– Error productions
– Automatic local or global correction

• Not all are supported by all parser generators

7

Error Recovery: Panic Mode

• Simplest, most popular method

• When an error is detected:
– Discard tokens until one with a clear role is found
– Continue from there

• Such tokens are called synchronizing tokens
– Typically the statement or expression terminators

8

Error Recovery: Panic Mode (Cont.)

• Consider the erroneous expression
 (1 + + 2) + 3

• Panic-mode recovery:
– Skip ahead to next integer and then continue

• Bison: use the special terminal error to describe
how much input to skip
 E → int | E + E | (E) | error int | (error)

9

Error Recovery: Error Productions

• Idea: specify in the grammar known common mistakes

• Essentially promotes common errors to alternative syntax

• Example:
– Write 5 x instead of 5 * x
– Add the production E → … | E E

• Disadvantage
– Complicates the grammar

10

Error Recovery: Local and Global Correction

• Idea: find a correct “nearby” program
– Try token insertions and deletions
– Exhaustive search

• Disadvantages:
– Hard to implement
– Slows down parsing of correct programs
– “Nearby” is not necessarily “the intended” program
– Not supported by most tools

11

Syntax Error Recovery: Past and Present

• Past
– Slow recompilation cycle (even once a day)
– Find as many errors in one cycle as possible
– Researchers could not let go of the topic

• Present
– Quick recompilation cycle
– Users tend to correct one error/cycle
– Complex error recovery is less compelling
– Panic-mode seems enough

12

Abstract Syntax Trees

• So far a parser traces the derivation of a
sequence of tokens

• The rest of the compiler needs a structural
representation of the program

• Abstract syntax trees
– Like parse trees but ignore some details
– Abbreviated as AST

13

Abstract Syntax Trees (Cont.)

• Consider the grammar
 E → int | (E) | E + E

• And the string
 5 + (2 + 3)

• After lexical analysis (a list of tokens)
 int5 ‘+’ ‘(‘ int2 ‘+’ int3 ‘)’

• During parsing we build a parse tree …

14

Example of Parse Tree

E

E E

(E)

+

E +

int5

int2

E

int3

• Traces the operation of
the parser

• Does capture the
nesting structure

• But too much info
– Parentheses
– Single-successor nodes

15

Example of Abstract Syntax Tree

• Also captures the nesting structure
• But abstracts from the concrete syntax

=> more compact and easier to use
• An important data structure in a compiler

PLUS

PLUS

 2 5 3

16

Semantic Actions Extension to CFGs

• This is what we’ll use to construct ASTs

• Each grammar symbol may have attributes
– For terminal symbols (lexical tokens) attributes can be

calculated by the lexer

• Each production may have an action
– Written as X → Y1…Yn { action }
– That can refer to or compute symbol attributes

17

Semantic Actions: Example

• Consider the grammar
 E → int | E + E | (E)

• For each symbol X define an attribute X.val
– For terminals, val is the associated lexeme
– For non-terminals, val is the expression’s value (and is computed

from values of subexpressions)

• We annotate the grammar with actions:
E → int { E.val = int.val }
 | E1 + E2 { E.val = E1.val + E2.val }
 | (E1) { E.val = E1.val }

18

Semantic Actions: Example (Cont.)

 Productions Equations
E → E1 + E2 E.val = E1.val + E2.val
E1 → int5 E1.val = int5.val = 5
E2 → (E3) E2.val = E3.val
E3 → E4 + E5 E3.val = E4.val + E5.val
E4 → int2 E4.val = int2.val = 2
E5 → int3 E5.val = int3.val = 3

• String: 5 + (2 + 3)
• Tokens: int5 ‘+’ ‘(‘ int2 ‘+’ int3 ‘)’

19

Semantic Actions: Notes

• Semantic actions specify a system of equations

• Declarative Style
– Order of resolution is not specified
– The parser figures it out

• Imperative Style
– The order of evaluation is fixed
– Important if the actions manipulate global state

Semantic Actions: Notes

• We’ll explore actions as pure equations
– But note bison has a fixed order of evaluation for

actions

• Example:
 E3.val = E4.val + E5.val
– Must compute E4.val and E5.val before E3.val
– We say that E3.val depends on E4.val and E5.val

20

21

Dependency Graph

E

E1 E2

(E3)

+

E4
+

int5

int2

E5

int3

 +

 +

 2

 5

• Each node labeled E has
one slot for the val
attribute

• Note the dependencies

 3

22

Evaluating Attributes

• An attribute must be computed after all its
successors in the dependency graph have been
computed
– In previous example attributes can be computed

bottom-up

• Such an order exists when there are no cycles
– Cyclically defined attributes are not legal

23

Dependency Graph

E

E1 E2

(E3)

+

E4
+

int5

int2

E5

int3

 10

 5

 5 5

 3 2

 2

 5

 3

24

Semantic Actions: Notes (Cont.)

• Synthesized attributes
– Calculated from attributes of descendents in the parse

tree
– E.val is a synthesized attribute
– Can always be calculated in a bottom-up order

• Grammars with only synthesized attributes are
called S-attributed grammars
– Most common case

25

Semantic Actions: Notes (Cont.)

• Semantic actions can be used to build ASTs

• And many other things as well
– Also used for type checking, code generation,

computation, …

• Process is called syntax-directed translation
– Substantial generalization over CFGs

26

Constructing an AST

• We first define the AST data type
– Supplied by us for the project

• Consider an abstract tree type with two constructors:

mkleaf(n)

mkplus(

T1

) =,

T2

=

PLUS

T1 T2

 n

27

Constructing an AST

• We define a synthesized attribute ast
– Values of ast values are ASTs
– We assume that int.lexval is the value of the integer

lexeme
– Computed using semantic actions

E → int E.ast = mkleaf(int.lexval)
 | E1 + E2 E.ast = mkplus(E1.ast, E2.ast)
 | (E1) E.ast = E1.ast

28

Abstract Syntax Tree Example

• Consider the string int5 ‘+’ ‘(‘ int2 ‘+’ int3 ‘)’
• A bottom-up evaluation of the ast attribute:

E.ast = mkplus(mkleaf(5),
 mkplus(mkleaf(2), mkleaf(3))

PLUS

PLUS

 2 5 3

29

Summary

• We can specify language syntax using CFG

• A parser will answer whether s ∈ L(G)
– … and will trace a parse tree
– … in whose productions we build an AST
– … that we pass on to the rest of the compiler

30

Intro to Top-Down Parsing: The Idea

• The parse tree is constructed
– From the top
– From left to right

• Terminals are seen in order of
appearance in the token stream:

 t2 t5 t6 t8 t9

1

t2 3

4

t5

7

t6

t9

t8

31

Recursive Descent Parsing

• Consider the grammar
 E → T |T + E
 T → int | int * T | (E)

• Token stream is: (int5)

• Start with top-level non-terminal E
– Try the rules for E in order

32

Recursive Descent Parsing

E → T |T + E
T → int | int * T | (E)

E

(int5)

33

Recursive Descent Parsing

E → T |T + E
T → int | int * T | (E)

E

T

(int5)

34

Recursive Descent Parsing

E → T |T + E
T → int | int * T | (E)

int

(int5)

E

T

Mismatch: int is not (!
Backtrack …

35

Recursive Descent Parsing

E → T |T + E
T → int | int * T | (E)

E

T

(int5)

36

Recursive Descent Parsing

E → T |T + E
T → int | int * T | (E)

E

T

(int5)

int * T
Mismatch: int is not (!
Backtrack …

37

Recursive Descent Parsing

E → T |T + E
T → int | int * T | (E)

E

T

(int5)

38

Recursive Descent Parsing

E → T |T + E
T → int | int * T | (E)

E

T

(int5)

(E)
Match! Advance input.

39

Recursive Descent Parsing

E → T |T + E
T → int | int * T | (E)

E

T

(int5)

(E)

40

Recursive Descent Parsing

E → T |T + E
T → int | int * T | (E)

E

T

(int5)

(E)

T

41

Recursive Descent Parsing

E → T |T + E
T → int | int * T | (E)

E

T

(int5)

(E)

T

int

Match! Advance input.

42

Recursive Descent Parsing

E → T |T + E
T → int | int * T | (E)

E

T

(int5)

(E)

T

int

Match! Advance input.

43

Recursive Descent Parsing

E → T |T + E
T → int | int * T | (E)

E

T

(int5)

(E)

T

int

End of input, accept.

44

A Recursive Descent Parser: Preliminaries

• Let TOKEN be the type of tokens
– Special tokens INT, OPEN, CLOSE, PLUS, TIMES

• Let the global next point to the next token

45

A (Limited) Recursive Descent Parser (2)

• Define boolean functions that check the token
string for a match of
– A given token terminal

bool term(TOKEN tok) { return *next++ == tok; }
– The nth production of S:

bool Sn() { … }
– Try all productions of S:

bool S() { … }

46

A (Limited) Recursive Descent Parser (3)

• For production E → T
bool E1() { return T(); }

• For production E → T + E
bool E2() { return T() && term(PLUS) && E(); }

• For all productions of E (with backtracking)
bool E() {

TOKEN *save = next;
return (next = save, E1())
 || (next = save, E2()); }

47

A (Limited) Recursive Descent Parser (4)

• Functions for non-terminal T
bool T1() { return term(INT); }
bool T2() { return term(INT) && term(TIMES) && T(); }
bool T3() { return term(OPEN) && E() && term(CLOSE); }

bool T() {
 TOKEN *save = next;
 return (next = save, T1()
 || (next = save, T2())
 || (next = save, T3()); }

48

Recursive Descent Parsing. Notes.

• To start the parser
– Initialize next to point to first token
– Invoke E()

• Easy to implement by hand
– But not completely general
– Cannot backtrack once a production is successful
– Works for grammars where at most one production can succeed

for a non-terminal

Example

E → T | T + E (int)
T → int | int * T | (E)

bool term(TOKEN tok) { return *next++ == tok; }

bool E1() { return T(); }
bool E2() { return T() && term(PLUS) && E(); }

bool E() {TOKEN *save = next; return (next = save, E1())
 || (next = save, E2()); }

bool T1() { return term(INT); }
bool T2() { return term(INT) && term(TIMES) && T(); }
bool T3() { return term(OPEN) && E() && term(CLOSE); }

bool T() { TOKEN *save = next; return (next = save, T1())
 || (next = save, T2())
 || (next = save, T3()); }

49

50

When Recursive Descent Does Not Work

• Consider a production S → S a
 bool S1() { return S() && term(a); }
 bool S() { return S1(); }

• S() goes into an infinite loop

• A left-recursive grammar has a non-terminal S
 S →+ Sα for some α

• Recursive descent does not work in such cases

51

Elimination of Left Recursion

• Consider the left-recursive grammar
 S → S α | β

• S generates all strings starting with a β and
followed by a number of α

• Can rewrite using right-recursion
 S → β S’
 S’ → α S’ | ε

52

More Elimination of Left-Recursion

• In general
 S → S α1 | … | S αn | β1 | … | βm

• All strings derived from S start with one of
β1,…,βm and continue with several instances of
α1,…,αn

• Rewrite as
 S → β1 S’ | … | βm S’
 S’ → α1 S’ | … | αn S’ | ε

53

General Left Recursion

• The grammar
 S → A α | δ
 A → S β
 is also left-recursive because

 S →+ S β α

• This left-recursion can also be eliminated

• See Dragon Book for general algorithm
– Section 4.3

54

Summary of Recursive Descent

• Simple and general parsing strategy
– Left-recursion must be eliminated first
– … but that can be done automatically

• Historically unpopular because of backtracking
– Was thought to be too inefficient
– In practice, fast and simple on modern machines

• In practice, backtracking is eliminated by
restricting the grammar

